|
[1] chainalysis.com: Chainalysis - blockchain analysis. [2] coinmarketcap.com: Cryptocurrency market capitalizations. [3] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun. Evaluating user privacy in bitcoin. In International Conference on Financial Cryptography and Data Security, pages 34–51. Springer, 2013. [4] M.Bartoletti,B.Pes,andS.Serusi.Dataminingfordetectingbitcoinponzischemes. In 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pages 75– 84, June 2018. [5] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. [6] L. S. Burks, A. E. Cox, K. Lakkaraju, M. J. Boyd, and E. Chan. Bitcoin address classification. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2017. [7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: syn- thetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002. [8] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794. ACM, 2016. [9] F. Chollet et al. Keras, 2015. [10] M. Conti, S. Kumar, C. Lal, and S. Ruj. A survey on security and privacy issues of bitcoin. IEEE Communications Surveys & Tutorials, 2018. [11] J. DuPont and A. C. Squicciarini. Toward de-anonymizing bitcoin by mapping users location. In Proceedings of the 5th ACM Conference on Data and Application Se- curity and Privacy, pages 139–141. ACM, 2015. [12] Y.FreundandR.E.Schapire.Adecision-theoreticgeneralizationofon-linelearning and an application to boosting. Journal of computer and system sciences, 55(1):119– 139, 1997. [13] I. Grigg. Eos, an introduction. Whitepaper) ” https://eos.io/documents/EOS_An_Introduction.pdf, 2017. [14] M.A.Harlev,H.SunYin,K.C.Langenheldt,R.Mukkamala,andR.Vatrapu.Break- ing bad: De-anonymising entity types on the bitcoin blockchain using supervised machine learning. In Proceedings of the 51st Hawaii International Conference on System Sciences, 2018. [15] T. Hastie, S. Rosset, J. Zhu, and H. Zou. Multi-class adaboost. Statistics and its Interface, 2(3):349–360, 2009. [16] S. Haykin and N. Network. A comprehensive foundation. Neural networks, 2(2004):41, 2004. [17] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998. [18] M. Jourdan, S. Blandin, L. Wynter, and P. Deshpande. Characterizing entities in the bitcoin blockchain. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pages 55–62, Nov 2018. [19] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Light- gbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems, pages 3146–3154, 2017. [20] R.Koenker.Quantile regression for longitudinal data.Journal of Multivariate Analysis, 91(1):74–89, 2004. [21] R. Koenker and G. Bassett Jr. Regression quantiles. Econometrica: journal of the Econometric Society, pages 33–50, 1978. [22] R. Koenker and K. F. Hallock. Quantile regression. Journal of economic perspec- tives, 15(4):143–156, 2001. [23] Y. Lin, P. Wu, C. Hsu, I. Tu, and S. Liao. An evaluation of bitcoin address classification based on transaction history summarization. In 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pages 302–310, May 2019. [24] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Understanding variable importances in forests of randomized trees. In Advances in neural information processing systems, pages 431–439, 2013. [25] J. MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967. [26] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and S. Savage. A fistful of bitcoins: characterizing payments among men with no names. In Proceedings of the 2013 conference on Internet measurement conference, pages 127–140. ACM, 2013. [27] P. Monamo, V. Marivate, and B. Twala. Unsupervised learning for robust bitcoin fraud detection. In Information Security for South Africa (ISSA), 2016, pages 129– 134. IEEE, 2016. [28] M. Moser. Anonymity of bitcoin transactions. 2013. [29] K. Nagata, H. Kikuchi, and C.-I. Fan. Risk of bitcoin addresses to be identified from features of output addresses. In 2018 IEEE Conference on Dependable and Secure Computing (DSC), pages 1–6. IEEE, 2018. [30] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. [31] V. R. Patil, A. P. Nikam, J. S. Pawar, and M. S. Pardhi. Bitcoin fraud detection using data mining approach. Journal of Information Technology and Sciences, 4(2), 2018. [32] F.Pedregosa,G.Varoquaux,A.Gramfort,V.Michel,B.Thirion,O.Grisel,M.Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011. [33] S. Ranshous, C. A. Joslyn, S. Kreyling, K. Nowak, N. F. Samatova, C. L. West, and S. Winters. Exchange pattern mining in the bitcoin transaction directed hypergraph. In International Conference on Financial Cryptography and Data Security, pages 248–263. Springer, 2017. [34] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph. In International Conference on Financial Cryptography and Data Security, pages 6–24. Springer, 2013. [35] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386–408, 1958. [36] R. E. Schapire. A brief introduction to boosting. In Proceedings of the 16th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’99, pages 1401–1406, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. [37] K. Toyoda, T. Ohtsuki, and P. T. Mathiopoulos. Identification of high yielding investment programs in bitcoin via transactions pattern analysis. In GLOBECOM 2017-2017 IEEE Global Communications Conference, pages 1–6. IEEE, 2017. [38] K. Toyoda, T. Ohtsuki, and P. T. Mathiopoulos. Multi-class bitcoin-enabled service identification based on transaction history summarization. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 1153–1160, July 2018. [39] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, 151:1–32, 2014. [40] H. S. Yin and R. Vatrapu. A first estimation of the proportion of cybercriminal entities in the bitcoin ecosystem using supervised machine learning. In Big Data (Big Data), 2017 IEEE International Conference on, pages 3690–3699. IEEE, 2017. [41] D. Zambre and A. Shah. Analysis of bitcoin network dataset for fraud. Unpublished Report, 2013.
|