(3.239.33.139) 您好!臺灣時間:2021/02/27 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王皓正
研究生(外文):Hao-Cheng Wang
論文名稱:利用粒子特效以增強虛擬環境中的風回饋
論文名稱(外文):Utilizing Particle Effect for Enhancing Wind Feedback in Immersive Environment
指導教授:洪一平洪一平引用關係
口試委員:林經堯莊永裕詹力韋
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:43
中文關鍵詞:觸覺回饋虛擬實境沉浸式體驗非接觸式觸覺回饋粒子效果觸覺錯覺
DOI:10.6342/NTU201903576
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用觸覺技術來增強沉浸式體驗已經在虛擬實境中被廣泛採用。儘管此項技術可以成功地增強沉浸感,許多觸覺回饋裝置的成本仍然過高,裝置上的硬體也有其投射範圍與運作極限。在本論文中,我們利用視覺粒子特效來增強沉浸式環境中的風回饋體驗。透過整合視覺效果和觸覺回饋,我們利用觸覺錯覺的技術,以實現強化VR中之感受。首先,我們基於人對於風的感知將裝置的風速進行量化。在此之後,為了研究粒子效果在觸覺錯覺的強化效果,我們再進行了兩個實驗,分別改變粒子的速度及擴散範圍來探索沉浸式環境中風體驗的增減益效果。結果顯示在我們的風裝置下,可以將風量化為四個等級。另外在改變視覺上粒子的速度及擴散範圍後,分別有38.5%及42.6%的機會可以讓使用者感受到相對應的增減益效果。最後,我們的結果可應用於利用風作為觸覺回饋的VR應用程式中。
Utilizing the haptic technologies for enhancing the immersive experience has been widely adopted in the virtual reality (VR). Although the immersion could be successfully enhanced, the cost of many tactile feedback displays are still too high, and the hardware on the device also has its projection range and operating limit. In this thesis, we utilize particle effect with airflow-based tactile sensation for enhancing the haptic experience in the immersive environment. By integrating the visual effect and the haptic feedback system, we synthesize the visuotactile illusion to achieve enhanced sensory engagement in the VR. First, we conduct a user study to quantify the wind speed of our display based on people’s tactile sensation of the wind. After that, to show the potential of proposed technique, we conduct two user studies, where we adjust the speed and diffusion of particle, to explore the enhancement via the wind modalities on the immersive experience. Our results can be applied in VR applications, which utilize airflow-based tactile feedback for enhancement.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
Chapter 2 Related Work 3
2.1 Wind Feedback System 3
2.2 Tactile Illusion 5
Chapter 3 Design Consideration 7
3.1 Volume and Speed of Wind 7
3.2 Effective Area of Wind 7
Chapter 4 Implementation 8
4.1 Hardware 8
4.2 Design of Particle Effect 11
4.2.1 Physical Behavior 11
4.2.2 Visual Expression 12
Chapter 5 Evaluation 16
5.1 User Study 1: Quantization of wind speed 17
5.1.1 Pilot Study 1: Minimum wind speed that people can feel 17
5.1.2 Main Study: Quantization of wind speed 20
5.2 User Study 2: Enhancement on speed of particle effect 25
5.3 User Study 3: Expansion on diffusion of particle effect 33
Chapter 6 Conclusion 40
Chapter 7 Future Work 41
REFERENCES 42
[1]Sutherland, Ivan E. “The ultimate display.” Multimedia: From Wagner to virtual reality (1965): 506-508.
[2]Deligiannidis, Leonidas, and Robert JK Jacob. “The vr scooter: Wind and tactile feedback improve user performance.” 3D User Interfaces (3DUI’06). IEEE, 2006.
[3]Rheiner, Max. “Birdly an attempt to fly.” ACM SIGGRAPH 2014 Emerging Technologies. ACM, 2014.
[4]Suzuki, Masatoshi, and Akihiro Matsuura. “Windtherm: A Wearable VR Device That Provides Temperature-Controlled Wind.” VIRTUAL REALITY INTERNATIONAL CONFERENCE VRIC 2019 PROCEEDINGS. 2019.
[5]Tolley, David, et al. “WindyWall: Exploring Creative Wind Simulations.” Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction. ACM, 2019.
[6]Han, Ping-Hsuan, et al. “Hapmosphere: Simulating the Weathers for Walking Around in Immersive Environment with Haptics Feedback” 2019 IEEE World Haptics Conference (WHC). IEEE, 2019.
[7]Je, Seungwoo, et al. “Wind-blaster: a wearable propeller-based prototype that provides ungrounded force-feedback.” ACM SIGGRAPH 2018 Emerging Technologies. ACM, 2018.
[8]Sasaki, Tomoya, et al. “Virtual Super-Leaping: Immersive Extreme Jumping in VR.” Proceedings of the 10th Augmented Human International Conference 2019. ACM, 2019.
[9]Pittera, Dario, Marianna Obrist, and Ali Israr. “Hand-to-hand: an intermanual illusion of movement.” Proceedings of the 19th ACM International Conference on Multimodal Interaction. ACM, 2017.
[10]Geldard, Frank A., and Carl E. Sherrick. “The cutaneous ‘rabbit’: A perceptual illusion.” Science 178.4057 (1972): 178-179.
[11]Von Békésy, Georg, and Ernest Glen Wever. “Experiments in hearing.” Vol. 8. New York: McGraw-Hill, 1960.
[12]Lécuyer, Anatole. “Simulating haptic feedback using vision: A survey of research and applications of pseudo-haptic feedback.” Presence: Teleoperators and Virtual Environments 18.1 (2009): 39-53.
[13]Martinez, Jonatan, et al. “Touchless haptic feedback for supernatural vr experiences.” 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2018.
[14]Ban, Yuki, et al. “Magic pot: Interactive metamorphosis of the perceived shape.” ACM SIGGRAPH 2012 Posters. ACM, 2012.
[15]Matsumoto, Keigo, et al. “Magic table: deformable props using visuo haptic redirection.” SIGGRAPH Asia 2017 Emerging Technologies. ACM, 2017.
[16]Abtahi, Parastoo, and Sean Follmer. “Visuo-Haptic Illusions for Improving the Perceived Performance of Shape Displays.” Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 2018.
[17]Perlin, Ken. “Improving noise.” ACM transactions on graphics (TOG). Vol. 21. No. 3. ACM, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔