|
[1]F. Bai and C.-M. Chew. Muscle force estimation with surface emg during dynamicmuscle contractions: A wavelet and ann based approach. InEngineeringinMedicineand Biology Society (EMBC), 2013 35th Annual International Conference of theIEEE, pages 4589–4592. IEEE, 2013. [2]I. Barofsky and M. W. Legro. Definition and measurement of fatigue.Reviews ofInfectious Diseases, 13(Supplement_1):S94–S97, 1991. [3]V. Becker, P. Oldrati, L. Barrios, and G. Sörös. Touchsense: Classifying and measur-ing the force of finger touches with an electromyography armband. InProceedingsof the 9th Augmented Human International Conference, AH ’18, pages 34:1–34:3,New York, NY, USA, 2018. ACM. [4]P. Bouissou, P. Estrade, F. Goubel, C. Guezennec, and B. Serrurier. Surface emgpower spectrum and intramuscular ph in human vastus lateralis muscle during dy-namic exercise.Journal of applied physiology, 67(3):1245–1249, 1989. [5]L. Brody, M. T. Pollock, S. H. Roy, C. De Luca, and B. Celli. ph-induced effectson median frequency and conduction velocity of the myoelectric signal.Journal ofApplied Physiology, 71(5):1878–1885, 1991. [6]M. Brzycki. Strength testing—predicting a one-rep max from reps-to-fatigue.Jour-nal of Physical Education, Recreation & Dance, 64(1):88–90, 1993. [7]K.-H. Chang, M. Y. Chen, and J. Canny. Tracking free-weight exercises. InInter-national Conference on Ubiquitous Computing, pages 19–37. Springer, 2007. [8]R. Chaudhri, J. Lester, and G. Borriello. An rfid based system for monitoring freeweight exercises. InProceedings of the 6th ACM Conference on Embedded NetworkSensor Systems, SenSys ’08, pages 431–432, New York, NY, USA, 2008. ACM. [9]C. Choi, S. Kwon, W. Park, H.-d. Lee, and J. Kim. Real-time pinch force estimationby surface electromyography using an artificial neural network.Medicalengineering& physics, 32(5):429–436, 2010. [10]J. M. Cissik. Basic principles of strength training and conditioning.NSCA’s Per-formance Training Journal, 1(4):7–11, 2002. [11]C. J. De Luca. The use of surface electromyography in biomechanics.Journal ofapplied biomechanics, 13(2):135–163, 1997. [12]C. J. De Luca. The use of surface electromyography in biomechanics.Journal ofapplied biomechanics, 13(2):135–163, 1997. [13]H. Ding, L. Shangguan, Z. Yang, J. Han, Z. Zhou, P. Yang, W. Xi, and J. Zhao.Femo: A platform for free-weight exercise monitoring with rfids. InProceedingsof the 13th ACM Conference on Embedded Networked Sensor Systems, SenSys ’15,pages 141–154, New York, NY, USA, 2015. ACM. [14]T. K. Evetovich. Progression models in resistance training for healthy adults (vol41, pg 687, 2009).Medicine and Science in Sports and Exercise, 41(6):1351–1351,2009. [15]K. Häkkinen, P. V. Komi, M. Alén, and H. Kauhanen. Emg, muscle fibre and forceproduction characteristics during a 1 year training period in elite weight-lifters.Eu-ropean journal of applied physiology and occupational physiology, 56(4):419–427,1987. [16]D. Hofmann, N. Jiang, I. Vujaklija, and D. Farina. Bayesian filtering of surface emgfor accurate simultaneous and proportional prosthetic control.IEEE Transactionson Neural Systems and Rehabilitation Engineering, 24(12):1333–1341, 2016. [17]Y. Iravantchi, Y. Zhang, E. Bernitsas, M. Goel, and C. Harrison. Interferi: Gesturesensing using on-body acoustic interferometry. InProceedings of the 2019 CHIConference on Human Factors in Computing Systems, page 276. ACM, 2019. [18]G. Kamen and G. E. Caldwell. Physiology and interpretation of the electromyogram.Journal of Clinical Neurophysiology, 13(5):366–384, 1996. [19]R. Khurana, K. Ahuja, Z. Yu, J. Mankoff, C. Harrison, and M. Goel. Gymcam: De-tecting, recognizing and tracking simultaneous exercises in unconstrained scenes.Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-nologies, 2(4):185, 2018. [20]W. J. Kraemer and N. A. Ratamess. Fundamentals of resistance training: progressionand exercise prescription.Medicine and science in sports and exercise, 36(4):674–688, 2004. [21]W. J. Kraemer, N. A. Ratamess, and D. N. French. Resistance training for health andperformance.Current sports medicine reports, 1(3):165–171, 2002. [22]N. Li, Y. Hou, and Z. Huang. A real-time algorithm based on triaxial accelerometerfor the detection of human activity state. InProceedings of the 6th InternationalConference on Body Area Networks, BodyNets ’11, pages 103–106, ICST, Brussels,Belgium, Belgium, 2011. ICST (Institute for Computer Sciences, Social-Informaticsand Telecommunications Engineering). [23]A. Luttmann, M. Jäger, and W. Laurig. Electromyographical indication of muscularfatigue in occupational field studies.InternationalJournalofIndustrialErgonomics,25(6):645–660, 2000. [24]R. Merletti and P. Di Torino. Standards for reporting emg data.J ElectromyogrKinesiol, 9(1):3–4, 1999. [25]F. Mobasser and K. Hashtrudi-Zaad. A comparative approach to hand force esti-mation using artificial neural networks.Biomedical engineering and computationalbiology, 4:BECB–S9335, 2012. [26]A. Möller, L. Roalter, S. Diewald, J. Scherr, M. Kranz, N. Hammerla, P. Olivier,and T. Plötz. Gymskill: A personal trainer for physical exercises. InPervasiveComputing and Communications (PerCom), 2012 IEEE International Conferenceon, pages 213–220. IEEE, 2012. [27]D.Morris, T.S.Saponas, A.Guillory, andI.Kelner. Recofit: Usingawearablesensorto find, recognize, and count repetitive exercises. InProceedings of the SIGCHIConference on Human Factors in Computing Systems, CHI ’14, pages 3225–3234,New York, NY, USA, 2014. ACM. [28]K. Murao and T. Terada. A recognition method for combined activities with ac-celerometers. InProceedings of the 2014 ACM International Joint Conference onPervasive and Ubiquitous Computing: Adjunct Publication, UbiComp ’14 Adjunct,pages 787–796, New York, NY, USA, 2014. ACM. [29]W. H. Organization. Global strategy on diet, physical activity and health.Retrieved April 10, 2019 from https://www.who.int/dietphysicalactivity/factsheet_adults/. [30]M. Parai, P. D. Shenoy, S. Velayutham, C. K. Seng, C. Y. F. Yee, et al. Isometricmuscle strength as a predictor of one repetition maximum in healthy adult females:a crossover trial.Clinical Trials in Orthopedic Disorders, 1(2):71, 2016. [31]S. Pizzolato, L. Tagliapietra, M. Cognolato, M. Reggiani, H. Müller, and M. Atzori.Comparison of six electromyography acquisition setups on hand movement classifi-cation tasks.PloS one, 12(10):e0186132, 2017. [32]S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava. Using mobilephones to determine transportation modes.ACMTrans.Sen.Netw., 6(2):13:1–13:27,Mar. 2010. [33]C. Seeger, A. Buchmann, and K. Van Laerhoven. myhealthassistant: A phone-basedbody sensor network that captures the wearer’s exercises throughout the day. InPro-ceedings of the 6th International Conference on Body Area Networks, BodyNets ’11, pages 1–7, ICST, Brussels, Belgium, Belgium, 2011. ICST (Institute for ComputerSciences, Social-Informatics and Telecommunications Engineering). [34]M. H. Stone, D. Collins, S. Plisk, G. Haff, and M. E. Stone. Training principles:Evaluation of modes and methods of resistance training.Strength & ConditioningJournal, 22(3):65, 2000. [35]P. Tomczykowska. The modern face of calisthenics. street workout as a new disci-pline of sport.Journal of Health Sciences, 3(11):011–020, 2013. [36]J. Vredenbregt and G. Rau. Surface electromyography in relation to force, musclelength and endurance. InNew Concepts of the Motor Unit, Neuromuscular Disor-ders, Electromyographic Kinesiology, volume 1, pages 607–622. Karger Publishers,1973.
|