|
[1] V. Arsigny, O. Commowick, X. Pennec, and N. Ayache. A log-euclidean framework for statistics on diffeomorphisms. In Proc. MICCAI, pages 924–931, 2006. [2] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1):26–41, 2008. [3] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca. An unsupervised learning model for deformable medical image registration. In Proc. CVPR, pages 9252–9260, 2018. [4] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV, 61(2):139–157, 2005. [5] B. D. de Vos, F. F. Berendsen, M. A. Viergever, M. Staring, and I. Išgum. End-to-end unsupervised deformable image registration with a convolutional neural network. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pages 204–212. 2017. [6] L. R. Dice. Measures of the amount of ecologic association between species. Ecology, 11(6):297–302, 1945. [7] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In Proc. NIPS, pages 2017–2025, 2015. [8] P. Jiang and J. A. Shackleford. Cnn driven sparse multi-level b-spline image registration. In Proc. CVPR, June 2018. [9] J. Kybic, P. Thévenaz, A. Nirkko, and M. Unser. Unwarping of unidirectionally distorted epi images. IEEE TMI, 19(2):80–93, 2000. [10] S. Lee, G. Wolberg, K.-Y. Chwa, and S. Y. Shin. Image metamorphosis with scattered feature constraints. IEEE TVCG, 2(4):337–354, 1996. [11] S. Lee, G. Wolberg, and S. Y. Shin. Scattered data interpolation with multilevel b-splines. IEEE TVCG, 3(3):228–244, 1997. [12] H. Li and Y. Fan. Non-rigid image registration using self-supervised fully convolutional networks without training data. In Proc. ISBI), pages 1075–1078, 2018. [13] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proc. CVPR, pages 3431–3440, 2015. [14] Y. Ou and C. Davatzikos. Dramms: deformable registration via attribute matching and mutual-saliency weighting. In Proc. IPMI, pages 50–62, 2009. [15] Y. Ou, D. H. Ye, K. M. Pohl, and C. Davatzikos. Validation of dramms among 12 popular methods in cross-subject cardiac mri registration. In International Workshop on Biomedical Image Registration, pages 209–219, 2012. [16] D. Rey, G. Subsol, H. Delingette, and N. Ayache. Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis. Med Image Anal, 6(2):163–179, Jun 2002. [17] M.-M. Rohé, M. Datar, T. Heimann, M. Sermesant, and X. Pennec. Svf-net: learning deformable image registration using shape matching. In Proc. MICCAI, pages 266–274, 2017. [18] O. Ronneberger, P. Fischer, and T. Brox. U-net: convolutional networks for biomedical image segmentation. In Proc. MICCAI, pages 234–241, 2015. [19] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration using free-form deformations: application to breast mr images. IEEE TMI, 18(8):712–721, 1999. [20] D. Shen and C. Davatzikos. Hammer: hierarchical attribute matching mechanism for elastic registration. In Proc. IEEE Workshop on MMBIA, pages 29–36, 2001. [21] H. Sokooti, B. de Vos, F. Berendsen, B. P. Lelieveldt, I. Išgum, and M. Staring. Nonrigid image registration using multi-scale 3d convolutional neural networks. In Proc. MICCAI, pages 232–239, 2017. [22] J.-P. Thirion. Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis, 2(3):243–260, 1998. [23] X. Yang, R. Kwitt, M. Styner, and M. Niethammer. Quicksilver: Fast predictive image registration–a deep learning approach. NeuroImage, 158:378–396, 2017. [24] M. Zhang and P. T. Fletcher. Finite-dimensional lie algebras for fast diffeomorphic image registration. In Proc. IPMI, pages 249–260, 2015. [25] X. Zhuang, L. Li, C. Payer, D. Štern, M. Urschler, M. P. Heinrich, J. Oster, C. Wang, O. Smedby, C. Bian, X. Yang, P.-A. Heng, A. Mortazi, U. Bagci, G. Yang, C. Sun, G. Galisot, J.-Y. Ramel, T. Brouard, and G. Yang. Evaluation of algorithms for multimodality whole heart segmentation: an open-access grand challenge. 02 2019. [26] W. Zufeng, L. Tian, W. Jiang, D. Yi, and Q. Zhiguang. Medical image registration using b-spline transform. IJSSST, 17(48), 2016.
|