(3.235.108.188) 您好!臺灣時間:2021/02/28 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林致弘
研究生(外文):Chih-Hung Lin
論文名稱:石門水庫入流量推估不確定性分析
論文名稱(外文):Uncertainty analysis of reservoir inflow estimation-A case study in Shihmen reservoir
指導教授:余化龍余化龍引用關係
指導教授(外文):Hwa-Lung Yu
口試委員:鄭克聲胡明哲江莉琦陳主惠
口試日期:2019-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:SWAT關聯結構不確定性分析
DOI:10.6342/NTU201902851
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
台灣由於地形及氣候條件的限制,造成降雨時空間分布不均。在台灣,只有20%左右的水可以被人民使用,因此水資源的分配已成為政府的一個重要議題。由於水資源的短缺,水庫是台灣最重要的水利設施,如果可以提供未來水庫入流量的模擬值,那麼對於水資源的調控將有會很大的幫助。因此有必要建立一個基於降雨逕流模型的水庫入流量推估模型。由於水文模擬的過程充滿各種不確定性,所以勢必以序率 (stochastic) 的架構來討論水庫入流量。
本文的研究區域為石門水庫,為台灣北部重要的水庫。主要提供農業用水、公共用水、發電和防洪等,是一個多功能的水庫。每年的11月至隔年5月為台灣枯水期,而一期稻作的耕種期間則為每年的1月至7月,由於兩者時間重疊,常常造成上半年水情吃緊,所以本研究將針對枯水期的水庫入流量進行探討。
本研究以SWAT模式 (Soil and Water Assessment Tool) 進行石門水庫入流量的推估;使用氣象繁衍模式生成單點的降雨量,並利用Copula函數建構的石門水庫上游雨量站的多變量分布,模擬上游集水區的降雨分佈。兩者搭配使用,可以提供水庫入流的不確性區間。在此不確定性的架構下,水庫入流量可被表示為一個機率密度函數。該入流量的機率密度函數,可以提供政府機關制定決策時的依據,對於未來可能發生的洪旱災提早做準備。期望本研究對於台灣未來的水資源調控有所幫助。
Due to the limitation of topography and climatic conditions, Taiwan has uneven spatial distribution during rainfall. In Taiwan, only about 20% of water can be used by people, so the distribution of water resources has become an important issue for the government. Due to the shortage of water resources, the reservoir is the most important water conservancy facility in Taiwan. If it can provide the simulated value of the future reservoir inflow, then the regulation of water resources will be of great help. Therefore, it is necessary to establish a reservoir inflow estimation model based on rainfall runoff model. Since the process of hydrological simulation is full of uncertainties, it is imperative to discuss reservoir inflows in a stochastic architecture.
The research area of this paper is Shimen Reservoir, which is an important reservoir in northern Taiwan. It mainly provides agricultural water, public water, power generation and flood control, and is a multifunctional reservoir. From November of each year to May of the next year, it is the dry season of Taiwan, while the cultivation period of the first phase of rice cultivation is from January to July of each year. Due to the overlapping of the two times, the water situation in the first half of the year is often tight, so this study will target the dry season. The reservoir inflow is explored.
In this study, the SWAT model (Soil and Water Assessment Tool) was used to estimate the inflow of Shimen Reservoir; the meteorological reproduction model was used to generate a single point of rainfall, and the Copula function was used to construct the multivariate distribution of the upstream rainfall station of Shimen Reservoir to simulate the upstream Rainfall distribution in the catchment area. The combination of the two can provide an uncertainty interval for reservoir inflow. Under this uncertainty structure, the reservoir inflow can be expressed as a probability density function. The probability density function of the inflow can provide a basis for government agencies to make decisions and prepare for the possible floods and droughts in the future. It is expected that this study will help Taiwan''s future water resources regulation.
口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 x
Chapter 1 前言 1
1.1 研究起源 1
Chapter 2 文獻回顧 5
2.1 SWAT模式 5
2.2 敏感性分析 6
2.3 關聯結構 (Copula) 6
2.4 氣象繁衍模式 (Weather Generator) 7
Chapter 3 研究方法 8
3.1 SWAT模式 8
3.1.1 地表逕流 10
3.1.2 尖峰流量 11
3.1.3 蒸發散量 12
3.1.4 土壤水 14
3.1.5 地下水 15
3.2 敏感性分析 15
3.3 不確定性分析 17
3.4 SPOTPY 18
3.5 氣象繁衍模式 (Weather Generator) 19
3.6 關聯結構 (Copula) 21
3.6.1 基本簡介 21
3.6.2 常用之高維度copula函數 22
3.6.3 Copula之參數推估與檢定 22
3.6.4 邊際分布 23
3.6.5 條件抽樣 (Conditional Sampling) 23
Chapter 4 研究區域 25
4.1 集水區簡介 25
4.2 水文資料 26
4.3 地文資料 28
Chapter 5 模式建置 30
5.1 SWAT模式建置 30
5.1.1 敏感度分析 31
5.1.2 模式校正與驗證 32
5.2 關聯結構 (Copula) 33
5.3 氣象繁衍模式(Weather Generator) 33
5.4 條件抽樣 (Conditional Sampling) 34
Chapter 6 結果與討論 35
6.1 敏感度分析 35
6.2 校正與驗證 42
6.3 關聯結構 (Copula) 47
6.4 氣象繁衍模式 50
6.4.1 氣象繁衍模式結果 52
6.5 條件抽樣 (Conditional Sampling) 56
6.6 水庫入流量不確定性分析 62
Chapter 7 結論與建議 68
7.1 結論 68
7.2 建議 69
Reference 71
Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752.
Akaike, H. (1974). A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike (pp. 215-222): Springer.
Allen, R. G. (1986). A Penman for all seasons. Journal of Irrigation and Drainage Engineering, 112(4), 348-368.
Allen, R. G., Jensen, M. E., Wright, J. L., & Burman, R. D. (1989). Operational estimates of reference evapotranspiration. Agronomy journal, 81(4), 650-662.
Arabi, M., Govindaraju, R. S., Engel, B., & Hantush, M. (2007). Multiobjective sensitivity analysis of sediment and nitrogen processes with a watershed model. Water Resources Research, 43(6).
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., et al. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73-89.
Bárdossy, A., & Pegram, G. (2009). Copula based multisite model for daily precipitation simulation. Hydrology and Earth System Sciences, 13(12), 2299-2314.
Chen, H., Guo, J., Zhang, Z., & Xu, C.-Y. (2013). Prediction of temperature and precipitation in Sudan and South Sudan by using LARS-WG in future. Theoretical and applied climatology, 113(3-4), 363-375.
Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance: John Wiley & Sons.
Chisanga, C. B., Phiri, E., & Chinene, V. R. (2017). Statistical downscaling of precipitation and temperature using long Ashton research station weather generator in Zambia: a case of mount makulu agriculture research station. American Journal of Climate Change, 6(03), 487.
Chu, T., & Shirmohammadi, A. (2004). Evaluation of the SWAT model’s hydrology component in the piedmont physiographic region of Maryland. Transactions of the ASAE, 47(4), 1057.
Cibin, R., Sudheer, K., & Chaubey, I. (2010). Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes: An International Journal, 24(9), 1133-1148.
Cukier, R., Fortuin, C., Shuler, K. E., Petschek, A., & Schaibly, J. (1973). Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. The Journal of chemical physics, 59(8), 3873-3878.
De Michele, C., & Salvadori, G. (2003). A generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐copulas. Journal of Geophysical Research: Atmospheres, 108(D2).
Dingman, S. L. (1994). Physical hydrology. Englewood Cliffs, N.J.: Prentice Hall.
Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40(1).
Firestone, M., Fenner-Crisp, P., Barry, T., Bennett, D., Chang, S., Callahan, M., et al. (1997). Guiding principles for Monte Carlo analysis. Washington, DC: US Environmental Protection Agency.
Hargreaves, G. H. (1975). Moisture availability and crop production. Transactions of the ASAE, 18(5), 980-0984.
Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of the irrigation and Drainage Division, 108(3), 225-230.
Hargreaves, G. L., Hargreaves, G. H., & Riley, J. P. (1985). Agricultural benefits for Senegal River basin. Journal of Irrigation and Drainage Engineering, 111(2), 113-124.
Hassan, Z., Shamsudin, S., & Harun, S. (2014). Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theoretical and applied climatology, 116(1-2), 243-257.
Helton, J. C. (1993). Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliability Engineering & System Safety, 42(2-3), 327-367.
Hesami Afshar, M., Sorman, A., & Yilmaz, M. (2016). Conditional copula-based spatial–temporal drought characteristics analysis—a case study over Turkey. Water, 8(10), 426.
Holvoet, K., van Griensven, A., Seuntjens, P., & Vanrolleghem, P. (2005). Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth, Parts A/B/C, 30(8-10), 518-526.
Houska, T., Kraft, P., Chamorro-Chavez, A., & Breuer, L. (2015). SPOTting model parameters using a ready-made python package. PloS one, 10(12), e0145180.
Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and irrigation water requirements.
Joe, H. (1997). Multivariate models and multivariate dependence concepts: Chapman and Hall/CRC.
Khoi, D. N., & Thom, V. T. (2015). Parameter uncertainty analysis for simulating streamflow in a river catchment of Vietnam. Global ecology and conservation, 4, 538-548.
Loukas, A., Vasiliades, L., & Dalezios, N. R. (2002). Climatic impacts on the runoff generation processes in British Columbia, Canada. Hydrology and Earth System Sciences Discussions, 6(2), 211-228.
Luo, Y., & Zhang, M. (2009). Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Environmental Pollution, 157(12), 3370-3378.
Metropolis, N. (1987). The beginning of the Monte Carlo method. Los Alamos Science, 15(584), 125-130.
Montanari, A., & Brath, A. (2004). A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 40(1).
Montanari, A., Rosso, R., & Taqqu, M. S. (1997). Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation, and simulation. Water Resources Research, 33(5), 1035-1044.
Monteith, J. L. (1965). Evaporation and environment, in the state and movement of water in living organisms. Paper presented at the Symp. Soc. Exp. Biol.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Muleta, M. K., & Nicklow, J. W. (2005). Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology, 306(1-4), 127-145.
Nelsen, R. B. (1999). An introduction to copulas: Springer Science & Business Media.
Nicks, A., & Gander, G. (1994). CLIGEN: A weather generator for climate inputs to water resource and other models. Paper presented at the Proc. Fifth Int. Conf. on Computers in Agriculture.
Nossent, J., Elsen, P., & Bauwens, W. (2011). Sobol’ Sensitivity Analysis of a Complex Environmental Model (Vol. 26).
Osidele, O., & Beck, M. (2001). Identification of model structure for aquatic ecosystems using regionalized sensitivity analysis. Water Science and Technology, 43(7), 271-278.
Penman, H. (1956). Evaporation: an introductory survey. Neth. J. Agric. Sci., 4, 9-29.
Priestley, C. H. B., & Taylor, R. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review, 100(2), 81-92.
Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological modelling, 57(1-2), 27-41.
Rahman, K., Maringanti, C., Beniston, M., Widmer, F., Abbaspour, K., & Lehmann, A. (2013). Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the Upper Rhone River watershed case in Switzerland. Water resources management, 27(2), 323-339.
Richardson, C. W. (1981). Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research, 17(1), 182-190.
Richardson, C. W., & Wright, D. A. (1984). WGEN: A model for generating daily weather variables.
Rosso, R. (1994). An introduction to spatially distributed modelling of basin response. Advances in distributed hydrology, 3, 30.
Saltelli, A., & Bolado, R. (1998). An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics & Data Analysis, 26(4), 445-460.
Saltelli, A., Chan, K., & Scott, M. (2000). Sensitivity analysis. Probability and statistics series. In: New York: John Wiley & Sons.
Salvadori, G., & De Michele, C. (2006). Statistical characterization of temporal structure of storms. Advances in Water Resources, 29(6), 827-842.
Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic change, 35(4), 397-414.
Semenov, M. A., Barrow, E. M., & Lars-Wg, A. (2002). A stochastic weather generator for use in climate impact studies. User Man Herts UK.
Semenov, M. A., Brooks, R. J., Barrow, E. M., & Richardson, C. W. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate research, 10(2), 95-107.
Semenov, M. A., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate research, 41(1), 1-14.
Shiau, J.-T., Wang, H.-Y., & Tsai, C.-T. (2010). Copula-based depth-duration-frequency analysis of typhoons in Taiwan. Hydrology Research, 41(5), 414-423.
Shiau, J. (2006). Fitting drought duration and severity with two-dimensional copulas. Water resources management, 20(5), 795-815.
Shiau, J. T., Feng, S., & Nadarajah, S. (2007). Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrological Processes: An International Journal, 21(16), 2157-2163.
Singh, V. P. (1995). Computer models of watershed hydrology. Rev.
Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8, 229-231.
Smith, M. D. (2003). Modelling sample selection using Archimedean copulas. The Econometrics Journal, 6(1), 99-123.
Sobol, I. M. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical modelling and computational experiments, 1(4), 407-414.
Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and computers in simulation, 55(1-3), 271-280.
Strauch, M., Bernhofer, C., Koide, S., Volk, M., Lorz, C., & Makeschin, F. (2012). Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. Journal of Hydrology, 414, 413-424.
Tang, Y., Reed, P., Van Werkhoven, K., & Wagener, T. (2007). Advancing the identification and evaluation of distributed rainfall‐runoff models using global sensitivity analysis. Water Resources Research, 43(6).
Thampi, S. G., Raneesh, K. Y., & Surya, T. (2010). Influence of scale on SWAT model calibration for streamflow in a river basin in the humid tropics. Water resources management, 24(15), 4567-4578.
Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55-94. http://www.jstor.org/stable/210739
United, S., & Soil Conservation, S. (1972). SCS national engineering handbook, section 4, hydrology. Washington: Govt. Print. Off.
van Griensven, A. v., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology, 324(1-4), 10-23.
Zhang, L., & Singh, V. (2006). Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11(2), 150-164.
Zhang, L., & Singh, V. P. (2007). Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology, 332(1-2), 93-109.
王昱中. (2014). 智慧型水資源調配策略以因應用水需求成長. (碩士), 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/mxn4cp
王振剛. (2011). 宜蘭地面降雨之統計降尺度推估:以IPCC-SRA2情境為例. (碩士), 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/khg7x7
李佳穎. (2018). 應用SWAT模式結合最大熵法模擬灌溉配水過程–以石門灌區為例. (碩士), 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/39uwsx
庞靖鹏, 徐宗学, & 刘昌明. (2007). SWAT 模型研究应用进展.
林志儒. (2016). 分析氣候及土地利用變遷情境對鳳山溪流域水文通量之影響. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/27ekcr
林冠州. (2017). 應用非點源汙染模式SWAT模擬翡翠水庫上游集水區流量及氮素之輸出與移動. (碩士), 國立臺灣師範大學, 台北市. Retrieved from https://hdl.handle.net/11296/63tahg
張期鈞. (2017). 機率預報不確定性於水資源調配之影響. (碩士), 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/bwpgj9
許振崑, 林., 邱世宜,鍾啟榮. (2015). <石門水庫集水區土壤厚度鑽掘資料探討土壤厚度空間分布特性.pdf>.
陳立宗. (2009). 翡翠水庫集水區水文暨水質模擬. (碩士), 國立臺北科技大學, 台北市. Retrieved from https://hdl.handle.net/11296/wec7q8
陳豐文. (2013). 評估氣候變遷下有效雨量對農業用水管理之衝擊. (博士), 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/s9fvcu
黃宇齊. (2010). 翡翠水庫及水庫集水區水文暨水質模擬與其不確定性. (碩士), 國立臺北科技大學, 台北市. Retrieved from https://hdl.handle.net/11296/924cg3
楊偉甫. (2010). 台灣地區水資源利用現況與未來發展問題.
經濟部水利署. (2018). <旱災災害防救業務計畫(核定版).pdf>.
潘丁平. (2011). 以SWAT模式評估土地利用變遷對河川流量及泥砂產量的影響-以Phu Luong集水區為例. (博士), 國立屏東科技大學, 屏東縣. Retrieved from https://hdl.handle.net/11296/hdtbgv
鄭仲廉. (2016). 因應都市化影響之智慧型水資源管理系統. (碩士), 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/g5mcyd
鍾閔光. (2015). SWAT模式功能分析與探討-以來社溪集水區為例. (碩士), 國立中興大學, 台中市. Retrieved from https://hdl.handle.net/11296/9sz2g8
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔