|
Aalami, H., Moghaddam, M. P., & Yousefi, G. J. A. E. (2010). Demand response modeling considering interruptible/curtailable loads and capacity market programs. 87(1), 243-250. Abrate, G., Bompard, E., Napoli, R., & Wan, B. (2006). Multi-agent models for consumer choice and retailer strategies in the competitive electricity market. Retrieved from Barbarosoǧlu, G., & Arda, Y. J. J. o. t. o. r. s. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. 55(1), 43-53. Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming: Springer Science & Business Media. Cappers, P., Goldman, C., & Kathan, D. J. E. (2010). Demand response in US electricity markets: Empirical evidence. 35(4), 1526-1535. Dept. of Household Registration, M. O. I. (2019). 中華民國 內政部戶政司 全球資訊網-人口統計資料. Retrieved from https://www.ris.gov.tw/app/portal/346 Green, R. J., & Newbery, D. M. J. J. o. p. e. (1992). Competition in the British electricity spot market. 100(5), 929-953. Hobbs, B. F., Metzler, C. B., & Pang, J.-S. J. I. t. o. p. s. (2000). Strategic gaming analysis for electric power systems: An MPEC approach. 15(2), 638-645. Houthakker, H. S. J. T. E. J. (1951). Electricity tariffs in theory and practice. 61(241), 1-25. Huang, C.-H. (2019). 用數據看台灣-台灣及時用電資訊. Retrieved from https://www.taiwanstat.com/realtime/power/ Huang, G., & Loucks, D. P. J. C. E. S. (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. 17(2), 95-118. Mahmoudi-Kohan, N., Moghaddam, M. P., & Sheikh-El-Eslami, M. J. E. P. S. R. (2010). An annual framework for clustering-based pricing for an electricity retailer. 80(9), 1042-1048. Marcotte, P. J. M. p. (1986). Network design problem with congestion effects: A case of bilevel programming. 34(2), 142-162. Mulvey, J. M., & Vladimirou, H. J. M. S. (1992). Stochastic network programming for financial planning problems. 38(11), 1642-1664. Pieper, H. (2001). Algorithms for mathematical programs with equilibrium constraints with applications to deregulated electricity markets: Stanford University Stanford, Calif. Raghunathan, A. U., Biegler, L. T. J. C., & engineering, c. (2003). Mathematical programs with equilibrium constraints (MPECs) in process engineering. 27(10), 1381-1392. Rudkevich, A., & Duckworth, M. J. T. E. J. (1998). Strategic bidding in a deregulated generation market: implications for electricity prices, asset valuation and regulatory response. 11(1), 73-83. Siddiqui, S., Gabriel, S. A. J. N., & Economics, S. (2013). An SOS1-based approach for solving MPECs with a natural gas market application. 13(2), 205-227. Torriti, J., Hassan, M. G., & Leach, M. J. E. (2010). Demand response experience in Europe: Policies, programmes and implementation. 35(4), 1575-1583. Xie, Y., Huang, G., Li, W., Li, J., & Li, Y. J. J. o. e. m. (2013). An inexact two-stage stochastic programming model for water resources management in Nansihu Lake Basin, China. 127, 188-205. Zhou, L., Liao, Z., Wang, J., Jiang, B., & Yang, Y. J. A. e. (2014). MPEC strategies for efficient and stable scheduling of hydrogen pipeline network operation. 119, 296-305. 政府網站資料開放宣告. (2018). 電價成本-經營資訊-資訊接露-台灣電力股份有限公司. 國家發展委員會. (2018). 台灣電力公司_各縣市住宅、服務業及機關用電統計資料.
|