(3.239.33.139) 您好!臺灣時間:2021/03/02 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李子豪
研究生(外文):Zih-Hao Li
論文名稱:MPEC模式於電力市場需量反應之分析
論文名稱(外文):MPEC Analysis of Demand Response in Electricity Markets
指導教授:胡明哲胡明哲引用關係
指導教授(外文):Ming-Che Hu
口試委員:余化龍溫在弘陳聿宏蔡孟伸
口試委員(外文):Hwa-Lung YuTsai-Hung WenYu-Hong ChenMeng-Shen Tsai
口試日期:2019-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:43
中文關鍵詞:mathematical program with equilibrium constraintsNash-Cournot equilibrium需量反應電力自由化最佳化策略
DOI:10.6342/NTU201903289
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,為了讓人民能自由選擇電力來源以及減輕台灣在用電高峰時發電機組的負載,政府開始推動電力市場自由化,希望更多公司提供新的電力來源。最近,需量反應也被認為是提供電力的新方式,因此需量反應將會是本研究主要的研究目標。然而,電力市場自由化後,成效還不顯著可歸咎於鮮少有對於未來台灣電力市場中競爭的分析及模擬,以至於潛在參與者對於市場的不確定性感到不安。因此,本研究提出將電力自由化後的台灣電力市場模擬成mathematical program with equilibrium constraints(MPEC) 問題。模式中包含利用stochastic programming以及Nash-Cournot equilibrium找出最佳的電力抑低量以及台電的需量反應獎勵金額。要解MPEC問題不是很容易,因此本研究使用GAMS中nlpec的solver,將MPEC reformulation,再找出最佳解。目前在台灣尚未有學者將台灣電力市場模擬成MPEC,而我們認為此模式可以精確的模擬台灣電力市場競爭狀況,並給政府或是想進入市場的玩家有擬訂政策或是策略的依據。
In recent years, in order to allow people to freely choose power sources and reduce the load on generators during peak hours in Taiwan, the government has begun to promote the liberalization of the electricity market, hoping that more companies will provide new sources of electricity. Besides, the demand response has also been considered as a new way to provide electricity, so the demand response will be the main research target of this study. However, after the liberalization of the electricity market, the results are not significant, which can attribute to the lack of analysis and simulation of competition in the future Taiwan electricity market and the potential players are concerned about the uncertainty of the market. Therefore, this study proposes to simulate the Taiwanese electricity market after power liberalization as a mathematical program with equilibrium constraints (MPEC). The model includes the use of stochastic programming and Nash-Cournot equilibrium to find the optimal amount of power reduction and the amount of demand response rewards for Taipower. To solve the MPEC problem is not very easy, so this study uses nlpec solver in GAMS, reformulate this MPEC problem, and then find the best solution. At present, no scholars in Taiwan have simulated the Taiwan power market as MPEC, and we believe that this model can accurately simulate the competition in the Taiwan power market and provide a basis for policy or strategy for the government or players who want to enter the market.
摘要 I
Abstract III
List of Contents V
List of Figures VII
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Electricity Market 5
2.2 Mathematical Program with Equilibrium Constraints 6
2.3 Demand response 8
Chapter 3 Methodology 10
3.1 Mathematical Program with Equilibrium Constraints 10
3.2 Two Stage Stochastic Programming 11
3.3 Nash-Cournot Model 13
3.4 Karush–Kuhn–Tucker Conditions 17
Chapter 4 The Model and Case Study 20
4.1 Model Description 20
4.2 Model Assumption 21
4.3 The Model – formulation 23
4.4 The Model – 2(Reformulation) 28
4.5 Case study 33
Chapter 5 Result and Discussion 35
5.1 Cost of Buying Electricity and Electricity Demand Fixed 35
5.1.1 Electricity Generation Cost Adjustment 35
5.1.2 Generation Capacity Adjustment 36
5.1.3 Relation between demand response effect on environment and money paid by Taipower Company 37
5.2 Electricity Demand Varies with Time 38
5.3 Buying Electricity Cost Varies with Time 39
Chapter 6 Conclusion 41
Reference 42
Aalami, H., Moghaddam, M. P., & Yousefi, G. J. A. E. (2010). Demand response modeling considering interruptible/curtailable loads and capacity market programs. 87(1), 243-250.
Abrate, G., Bompard, E., Napoli, R., & Wan, B. (2006). Multi-agent models for consumer choice and retailer strategies in the competitive electricity market. Retrieved from
Barbarosoǧlu, G., & Arda, Y. J. J. o. t. o. r. s. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. 55(1), 43-53.
Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming: Springer Science & Business Media.
Cappers, P., Goldman, C., & Kathan, D. J. E. (2010). Demand response in US electricity markets: Empirical evidence. 35(4), 1526-1535.
Dept. of Household Registration, M. O. I. (2019). 中華民國 內政部戶政司 全球資訊網-人口統計資料. Retrieved from https://www.ris.gov.tw/app/portal/346
Green, R. J., & Newbery, D. M. J. J. o. p. e. (1992). Competition in the British electricity spot market. 100(5), 929-953.
Hobbs, B. F., Metzler, C. B., & Pang, J.-S. J. I. t. o. p. s. (2000). Strategic gaming analysis for electric power systems: An MPEC approach. 15(2), 638-645.
Houthakker, H. S. J. T. E. J. (1951). Electricity tariffs in theory and practice. 61(241), 1-25.
Huang, C.-H. (2019). 用數據看台灣-台灣及時用電資訊. Retrieved from https://www.taiwanstat.com/realtime/power/
Huang, G., & Loucks, D. P. J. C. E. S. (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. 17(2), 95-118.
Mahmoudi-Kohan, N., Moghaddam, M. P., & Sheikh-El-Eslami, M. J. E. P. S. R. (2010). An annual framework for clustering-based pricing for an electricity retailer. 80(9), 1042-1048.
Marcotte, P. J. M. p. (1986). Network design problem with congestion effects: A case of bilevel programming. 34(2), 142-162.
Mulvey, J. M., & Vladimirou, H. J. M. S. (1992). Stochastic network programming for financial planning problems. 38(11), 1642-1664.
Pieper, H. (2001). Algorithms for mathematical programs with equilibrium constraints with applications to deregulated electricity markets: Stanford University Stanford, Calif.
Raghunathan, A. U., Biegler, L. T. J. C., & engineering, c. (2003). Mathematical programs with equilibrium constraints (MPECs) in process engineering. 27(10), 1381-1392.
Rudkevich, A., & Duckworth, M. J. T. E. J. (1998). Strategic bidding in a deregulated generation market: implications for electricity prices, asset valuation and regulatory response. 11(1), 73-83.
Siddiqui, S., Gabriel, S. A. J. N., & Economics, S. (2013). An SOS1-based approach for solving MPECs with a natural gas market application. 13(2), 205-227.
Torriti, J., Hassan, M. G., & Leach, M. J. E. (2010). Demand response experience in Europe: Policies, programmes and implementation. 35(4), 1575-1583.
Xie, Y., Huang, G., Li, W., Li, J., & Li, Y. J. J. o. e. m. (2013). An inexact two-stage stochastic programming model for water resources management in Nansihu Lake Basin, China. 127, 188-205.
Zhou, L., Liao, Z., Wang, J., Jiang, B., & Yang, Y. J. A. e. (2014). MPEC strategies for efficient and stable scheduling of hydrogen pipeline network operation. 119, 296-305.
政府網站資料開放宣告. (2018). 電價成本-經營資訊-資訊接露-台灣電力股份有限公司.
國家發展委員會. (2018). 台灣電力公司_各縣市住宅、服務業及機關用電統計資料.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔