跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/14 10:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕妏
研究生(外文):Yi-Wen Chen
論文名稱:應用氮同位素模擬濁水溪沖積扇地下水含氮化合物與砷之生地化循環關係
論文名稱(外文):Simulating Biogeochemical Processes of Groundwater Arsenic and Nitrogen in Choushui River Alluvial Fan: Using Nitrogen Isotope
指導教授:劉振宇劉振宇引用關係
指導教授(外文):Chen-Wuing Liu
口試委員:譚義績江漢全陳瑞昇高雨瑄
口試委員(外文):Yih-Chi TanHann-Chyuan ChiangJui-Sheng ChenYu-Hsuan Kao
口試日期:2019-06-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:86
中文關鍵詞:脫氮反應濁水溪沖積扇地下水同位素PHREEQC
DOI:10.6342/NTU201901221
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
濁水溪沖積扇為臺灣重要地下含水層,地下水含氮化合物汙染主要源於農業活動發展,扇尾區具高濃度砷汙染,而該區域砷釋出機制仍未明確,且砷汙染因子與氨氮群集。本研究目的為建立濁水溪沖積扇地區地下水含氮化合物與砷之生地化循環關係模型,模擬並評估地下水之水文化學特徵及傳輸路徑之影響。應用地質化學模式PHREEQC進行模擬,研究主要分為三部分。第一部分為水質參數模擬,透過呼吸作用及脫氮能力模擬,評估扇尾區域地下水環境為脫氮作用主導,扇頂區域需要較高濃度之有機物濃度進行呼吸作用方能使環境缺氧進入脫氮反應,而扇頂區有機物並未具所需之濃度,因此無法進行脫氮反應;透過硝化作用模擬,相同歷時,儘管扇頂區氨氮濃度消耗比例大,然並未有高濃度硝酸鹽氮生成,評估扇頂區之高硝酸鹽氮濃度並非因硝化作用產生,並從同位素驗證及文獻回顧得知,其原因為施用肥料所產生;透過脫氮作用模擬,溶氧耗盡後硝酸鹽氮消耗速率增快並伴隨亞硝酸鹽氮及氮氣生成,且於長時間(50年)作用方有氨氮產生,扇尾區硝酸鹽消耗比例較高,顯示該區域明顯脫氮作用發生;將砷物種加入脫氮作用模擬,砷物種之加入使硝酸鹽氮消耗速率加快,表示脫氮作用因此加快進行,並且當脫氮作用發生時,伴隨著三價砷氧化成五價砷,評估缺氧狀態下三價砷之氧化促使硝酸鹽氮還原進行脫氮作用。第二部分進行同位素驗證,經水樣分析評估扇頂區域之低 及低 概因過量肥料施用造成高濃度硝酸鹽氮汙染,且此區域 比例為硝化作用產生之硝酸鹽氧同位素範圍-10‰~+10‰間,驗證此區域發生硝化作用,將氨氮反應為硝酸鹽氮,而扇央及扇尾區域之同位素為分化作用之結果;並經同位素脫氮作用模擬, 比值隨著脫氮作用發生而增高,其分化作用映證扇尾區及扇央區脫氮作用之發生,且扇尾區較為明顯;透過同位素富集因子計算,由同位素分化作用評估濁水溪沖積扇地下水脫氮作用速率於反應初期較為劇烈。第三部分為模擬地下水砷移流傳輸及表面錯合反應,扇央區流入扇尾區之硝酸鹽氮濃度隨反應時間減少,映證脫氮作用之發生,且流入扇尾區之五價砷易吸附於鐵(氫)氧化合物形成錯合物,而脫氮作用產生之氨氮易與鐵(氫)氧化合物反應,並使表面之五價砷脫附為三價砷進入地下水體,使扇尾區域三價砷濃度增高。
Choushui River alluvial fan is the important aquifer in Taiwan. The nitrogen pollution in the proximal fan is mainly associated with agriculture activities. Moreover, the high arsenic concentration has been identified in the distal fan, but the arsenic release mechanism remained unclear. The factor analysis showed that arsenic pollution was correlated well with ammonium. The objective of this study is to investigate the biogeochemical processes of nitrogen and arsenic in Choushui River alluvial fan. The hydrogeochemical model was used to simulate the groundwater geochemical characteristics and transport process. The study adopted the geochemical model PHREEQC for simulation. The simulation result of respiration and denitrification capacities reveals that denitrification is the dominant reaction in the distal fan. In the proximal fan, the groundwater requires sufficient microorganisms to promote the aerobic respiration for denitrification. The insufficient microorganisms were not able to exhaust dissolved oxygen. In the same time, despite the high ratio of ammonium reacted in the proximal fan, the product of nitrate concentration was low. The result showed that the high nitrate pollution in the proximal fan originate from nitrification. In the simulating denitrification process, after the dissolved oxygen was consumed, the rate of nitrate consumption became faster with generating nitrite and nitrogen products, and the ammonium may produce after a long period of time. The high ratio of nitrate reactant in the distal fan indicated that denitrification occurred in the area. The rate of denitrification became faster if the arsenic species existed in the environment, the oxidation of arsenite (As3+) was stoichiometrically coupled to the reduction of nitrate. In other words, the nitrite could be oxidized to nitrates because of arsenite. The isotope simulation is used to verify the proposed reactions. According to the sampling for stable isotope analysis, high nitrate concentrations are associated with low and low values and these low values represent the isotopic composition of nitrate resulting from organic N fertilizers in the proximal fan. After all, the range of is -10 ‰ to +10 ‰, suggested that the nitrification did occurr in the area. And the analysis showed the isotope fractionation reaction existed in the mid fan and distal fan. The denitrification could cause the isotopic fractionation, therefore, the value would be higher. The result of isotopic modeling demonstrated that the denitrification occurred in the area and the reaction in the distal fan was more likely. The isotopic enrichment factor suggested relatively rapid denitrification in the initial reaction and declined with time. The simulation of reactive groundwater transport with surface complexation of arsenic to iron (hydr)oxides from the mid fan into distal fan showed that the denitrification occurred, arsenic might be sorbed to iron (hydr)oxides, and the denitrification product of ammonium could reduce iron (hydr)oxides to release the arsenite to groundwater.
摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究流程 2
1-4 論文架構 3
第二章 文獻回顧 5
2 - 1 地層環境砷之特性與分佈 5
2 - 1 - 1 砷之基本化學特性 5
2 - 1 - 2 全球總砷分佈概述 5
2 - 1 - 3 台灣地區 8
2 - 2 地質環境中砷可能之釋出及吸附機制 8
2 - 3 地層環境氮化合物之特性 9
2 - 4 水文地質化學模式 10
2 - 4 - 1 水文地質化學模式之發展與應用 10
2 - 4 - 2 水文地質化學模式模擬砷之案例 11
2 - 4 - 3 水文地質化學模式模擬同位素之案例 12
第三章 研究區域 14
3 - 1 濁水溪沖積扇地區 14
3 - 2 水文概況 15
3 - 3 地文條件 15
3 - 4 土地利用 16
3 - 5 沖積扇分區 16
3 - 6 沖積扇地下水水質汙染情形 18
3 - 5 - 1 鹽化 18
3 - 5 - 2 硝酸鹽及氨氮汙染 18
3 - 5 - 3 砷汙染 20
第四章 材料與方法 22
4 - 1 水樣採集 22
4 - 1 - 1 採樣數據 23
4 - 1 - 2 數據前處理 24
4 - 2 地質化學模式──PHREEQC 24
4 - 2 - 1 PHREEQC模式介紹 24
4 - 2 - 2 PHREEQC模式理論 25
4 - 3 穩定性同位素 28
4 - 4 模式設定 30
4 - 4 - 1 模擬脫氮能力 30
4 - 4 - 2 模擬硝化作用 30
4 - 4 - 3 模擬脫氮作用 32
4 - 4 - 4 模擬含砷之脫氮作用 32
4 - 4 - 5 模擬含砷與同位素脫氮作用 33
4 - 4 - 6 模擬一維傳輸移流及表面錯合反應 33
第五章 結果討論 41
5 - 1模擬脫氮能力 41
5 - 2 模擬硝化作用 42
5 - 3 模擬脫氮作用 42
5 - 4 模擬含砷之脫氮作用 43
5 - 5 模擬含砷與同位素脫氮作用 44
5 - 5 - 1 同位素水樣分析 44
5 - 5 - 2 PHREEQC模擬 45
5 - 5 - 3 脫氮作用與同位素關係 45
5 - 6 模擬一維傳輸移流及表面錯合反應 46
第六章 結論與建議 62
6 - 1 結論 62
6 - 2 建議 63
參考文獻 65
附錄 水質資料 79
內政部國土測繪中心,2005,https://www.nlsc.gov.tw/LUI/Home/Content_Home.aspx。
台糖新營廠地下水中心及其研究所,2003,台灣地區地下水觀測網水質監測調查分析(5/5)。經濟部水利署(台北辦公區)。
行政院農委會,2006,肥料要覽 民國95年(第增訂四版版)臺北市行政院農委會農糧署。
徐年盛、江崇榮、汪中和、劉振宇、劉宏仁、黃建霖,2012,多類灌溉型式下地下水系統抽水量與補注量之估算。農工學報 第58卷,第1期,頁 69-90。
翁宗男,2019,同位素闡釋濁水溪沖積扇含砷地下水氮化合物之來源及轉化國立臺灣大學生物環境系統工程學研究所。
陳享宗、劉振宇,1997,雲林沿海地區地下水鹽化問題之探討。八十六年度農業工程研討會論文集,頁 407-413。
彭宗仁、汪中和、饒欽良、紅玉倫,2001,南投地區烏溪流域集水區之水文同位素研究。第四屆地下水資源及水質保護研討會論文集,頁 321-332。
彭宗仁、董奇矗、陳琦玲、范家華、林毓雯、劉滄棽,2007,南投名間農作區與鄉鎮區地下水化學特徵比較。農業工程研討會,頁 143-162。
黃詠愷,2002,烏腳病盛行地區養殖魚貝類砷物種分析研究。台北醫學院公共衛生學研究所,臺灣。
經濟部中央地質調查所,1999,臺灣地區地下水觀測網第一期計畫濁水溪沖積扇水文地質調查研究總報告: 附圖。
經濟部水利署,2007,濁水溪沖積扇地面地下水聯合運用管理模式建立與機制評估總報告。
經濟部水利署,2010,地下水補注機制水力特性調查分析濁水溪沖積扇(1/2)。
經濟部水利署,2015,水文年報歷年電子書。
經濟部水利署,2018,台灣地區地下水水質檢測。水利署電子報 0293。
劉振宇,2008,集水區上游南投地區地下水硝酸鹽氮污染潛勢評估,頁 53-77。
劉振宇、張介翰、張誠信、盧光亮、李金靖,2007,應用因子分析法探討高砷濃度地區地下水水質特徵。臺灣水利,頁 14-24。
盧光亮,2007,濁水溪沖積扇南翼地質岩心中砷釋出機制探討。國立臺灣大學生物環境系統工程學研究所,臺灣。
盧光亮,2011,台灣西南沿海地區地下水砷之生物地化特徵及循環。國立臺灣大學生物環境系統工程學研究所,臺灣。
Acharyya, S. K., Chakraborty, P., Lahiri, S., Raymahashay, B. C., Guha, S., & Bhowmik, A. 1999. Arsenic poisoning in the Ganges delta. Nature, 401(6753), 545-545.
Aiuppa, A., D''Alessandro, W., Federico, C., Palumbo, B., & Valenza, M. 2003. The aquatic geochemistry of arsenic in volcanic groundwaters from southern Italy. Applied Geochemistry, 18(9), 1283-1296.
Allison, J. D., Brown, D. S., & Novo-Gradac, K. J. 1991. MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: version 3.0 user''s manual: Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Athens, Georgia 30605.
Amini, M., Abbaspour, K. C., Berg, M., Winkel, L., Hug, S. J., Hoehn, E., Yang, H., & Johnson, C. A. 2008. Statistical modeling of global geogenic arsenic contamination in groundwater. Environmental science & technology, 42(10), 3669-3675.
Appelo, & Postma. 1993. Geochemistry, groundwater and pollution: Rotterdam. 536.
Appelo, & Postma, D. 2005. Geochemistry, Groundwater and Pollution. A.A (Vol. 1996).
Appelo, & Vet, D. 2003. Modeling in situ iron removal from groundwater with trace elements such as As. In Arsenic in Ground Water (pp. 381-401): Springer.
Aravena, R., & Robertson, W. D. J. G. 1998. Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large‐flux septic system plume. 36(6), 975-982.
Böttcher, J., Strebel, O., Voerkelius, S., & Schmidt, H. L. 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology, 114(3), 413-424.
Back, W. 1966. Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain. (498A).
Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. 2001. Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environmental Science and Technology, 35(13), 2621-2626.
BGS, & DPHE. 2001. Arsenic contamination of groundwater in Bangladesh.
Bhumbla, D. K., & Keefer, R. F. 1994. Arsenic in the Environment. Cycling and Characterization, 51-82.
Bostick, B. C., & Fendorf, S. 2003. Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochimica et Cosmochimica Acta, 67(5), 909-921.
Burkart, M. R., Stoner, J. D. J. W. S., & Technology. 2002. Nitrate in aquifers beneath agricultural systems. 45(9), 19-29.
Chadha, D., & Ray, S. J. C., Ministry of Water Resources, Faridabad, India. 1999. High incidence of arsenic in groundwater in West Bengal.
Chae, G.-T., Kim, K., Yun, S.-T., Kim, K.-H., Kim, S.-O., Choi, B.-Y., Kim, H.-S., & Rhee, C. W. 2004. Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility. Chemosphere, 55(3), 369-378.
Chakraborti, D., Sengupta, M. K., Rahman, M. M., Ahamed, S., Chowdhury, U. K., Hossain, A., Mukherjee, S. C., Pati, S., Saha, K. C., & Dutta, R. 2004. Groundwater arsenic contamination and its health effects in the Ganga-Meghna-Brahmaputra plain. Journal of Environmental Monitoring, 6(6), 74.
Chang, C.-N., Cheng, H.-B., & Chao, A. C. 2004. Applying the Nernst Equation To Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes. Environmental science & technology, 38(6), 1807-1812.
Chapelle, F. H. 2000. The significance of microbial processes in hydrogeology and geochemistry. Hydrogeology Journal, 8(1), 41-46.
Charlet, L., & Polya, D. A. 2006. Arsenic in shallow, reducing groundwaters in Southern Asia: An environmental health disaster. Elements, 2(2), 91-96.
Chen, C.-J., Chuang, Y., You, S., Lin, T., & Wu, H. J. B. j. o. c. 1986. A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. 53(3), 399.
Davidson, E. A., & Seitzinger, S. 2006. The enigma of progress in denitrification research. Ecological Applications, 16(6), 2057-2063.
Davies, C. W. 1962. Ion association. Washington: Butterworths.
Davis, J. A., & Kent, D. B. 1990. Surface complexation modeling in aqueous geochemistry. Mineral-water interface geochemistry, 23, 177-260.
Dixit, S., & Hering, J. G. 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science and Technology, 37(18), 4182-4189.
Dzombak, D. A., & Morel, F. 1990. Surface complexation modeling: hydrous ferric oxide: John Wiley & Sons.
Engel, M. S., & Alexander, M. 1958. Growth and autotrophic metabolism of Nitrosomonas europaea. Journal of bacteriology, 76(2), 217-222.
Falcone, A. B., Shug, A. L., & Nicholas, D. J. D. 1963. Some properties of a hydroxylamine oxidase from Nitrosomonas europaea. BBA - Biochimica et Biophysica Acta, 77(C), 199-208.
Fan, A. M., & Steinberg, V. E. 1996. Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regulatory Toxicology and Pharmacology, 23(1 I), 35-43.
Fendorf, S., Michael, H. A., & Van Geen, A. 2010. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science, 328(5982), 1123-1127.
Foster, S. 2000. The Ninth Ineson Lecture: Assessing and Controlling the Impacts of Agriculture on Groundwater--from Barley Barons to Beef Bans (Vol. 33).
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., & Galloway, J. N. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130164.
Gönenç, E., & Wolflin, J. P. 2005. Coastal Lagoons: Ecosystem Processes and Modeling for Sustainable Use and Development.
Gómez, J. J., Lillo, J., & Sahún, B. 2006. Naturally occurring arsenic in groundwater and identification of the geochemical sources in the Duero Cenozoic Basin, Spain. Environmental Geology, 50(8), 1151-1170.
Garrels, & Christ. 1965. Solutions, Minerals, and Equilibria, Freeman-Cooper (1965), p. 450pp. In: Harper and~ Row, New York, NY.
Garrels, & Mackenzie. 1967. Origin of the Chemical Compositions of Some Springs and Lakes. In Equilibrium Concepts in Natural Water Systems (Vol. 67, pp. 222-242): AMERICAN CHEMICAL SOCIETY.
Gelhar, L. W., Welty, C., & Rehfeldt, K. R. 1992. A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28(7), 1955-1974.
Groffman, P. M., Altabet, M. A., Böhlke, J., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., & Voytek, M. A. 2006. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecological Applications, 16(6), 2091-2122.
Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K., Tague, C., Tonitto, C., & Vidon, P. 2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93(1-2), 49-77.
Höring, H., & Chapman, D. 2004. Nitrates and Nitrites in Drinking Water in: World Health Organization Drinking Water Series IWA Publishing. In: London.
Hafeznezami, S., Lam, J. R., Xiang, Y., Reynolds, M. D., Davis, J. A., Lin, T., & Jay, J. A. 2016. Arsenic mobilization in an oxidizing alkaline groundwater: Experimental studies, comparison and optimization of geochemical modeling parameters. Applied Geochemistry, 72, 97-112.
Harvey, C. F., Ashfaque, K. N., Yu, W., Badruzzaman, A. B. M., Ali, M. A., Oates, P. M., Michael, H. A., Neumann, R. B., Beckie, R., Islam, S., & Ahmed, M. F. 2006. Groundwater dynamics and arsenic contamination in Bangladesh. Chemical Geology, 228(1-3 SPEC. ISS.), 112-136.
Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P. M., Ashfaque, K. N., Islam, S., Hemond, H. F., & Ahmed, M. F. 2002. Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602-1606.
Hinkle, S. R., & Polette, D. J. 1999. Arsenic in ground water of the Willamette Basin, Oregon.
Hofman, T., & Lees, H. 1953. The biochemistry of the nitrifying organisms. 4. The respiration and intermediary metabolism of Nitrosomonas. Biochemical Journal, 54(4), 579.
Hongshao, Z., & Stanforth, R. 2001. Competitive adsorption of phosphate and arsenate on goethite. Environmental Science and Technology, 35(24), 4753-4757.
Hudak, P. J. J. o. H. 2000. Regional trends in nitrate content of Texas groundwater. 228(1-2), 37-47.
IARC. 2012. Pharmaceuticals. Volume 100 A. A review of human carcinogens. 100(PT A), 1.
Inamdar, S. 2006. CHALLENGES IN MODELING HYDROLOGIC AND WATER QUALITY PROCESSES IN RIPARIAN ZONES 1. JAWRA Journal of the American Water Resources Association, 42(1), 5-14.
Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Chamok, J. M., Chatterjee, D., & Lloyd, J. R. 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68-71.
Jiménez R.A. 2011. Geochemical Model of Redox Reactions in a Tropical Rain Forest Stream Riparian Zone: DOC Oxidation, Respiration and Denitrification. (Master''s Capstone and Thesis.), University of Pennsylvania.,
Kanel, S. R., Manning, B., Charlet, L., & Choi, H. 2005. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science and Technology, 39(5), 1291-1298.
Kanematsu, M., Young, T. M., Fukushi, K., Green, P. G., & Darby, J. L. 2012. Individual and combined effects of water quality and empty bed contact time on As(V) removal by a fixed-bed iron oxide adsorber: Implication for silicate precoating. Water Research, 46(16), 5061-5070.
Karim, M. M. J. W. R. 2000. Arsenic in groundwater and health problems in Bangladesh. 34(1), 304-310.
Kendall, C. 1998. Tracing nitrogen sources and cycling in catchments. Tracing Nitrogen Sources and Cycling in Catchments, 519-576.
Kendall, C., & Caldwell, E. 1998. Chapter2 - Fundamentals of isotope geochemistry. In Isotope tracers in catchment hydrology (pp. 51-86): Elsevier.
Kenneth, G. S. 2003. Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In Arsenic in ground water (pp. 67-100): Springer.
Kim, K.-H., Yun, S.-T., Mayer, B., Lee, J.-H., Kim, T.-S., & Kim, H.-K. 2015. Quantification of nitrate sources in groundwater using hydrochemical and dual isotopic data combined with a Bayesian mixing model. Agriculture, Ecosystems & Environment, 199, 369-381.
Kinniburgh, D., & Smedley, P. 2001. Arsenic contamination of groundwater in Bangladesh.
Kulik, D. A. 2002. Sorption modelling by Gibbs energy minimisation: Towards a uniform thermodynamic database for surface complexes of radionuclides. Radiochimica Acta, 90(9-11), 815-832.
Lee, J. J., Jang, C. S., Wang, S. W., Liang, C. P., & Liu, C. W. J. H. P. A. I. J. 2008. Delineation of spatial redox zones using discriminant analysis and geochemical modelling in arsenic‐affected alluvial aquifers. 22(16), 3029-3041.
Lovley, D. R. 1997. Microbial Fe(III) reduction in subsurface environments. FEMS Microbiology Reviews, 20(3-4), 305-313.
Mahlknecht, J., Gárfias-Solis, J., Aravena, R., & Tesch, R. 2006. Geochemical and isotopic investigations on groundwater residence time and flow in the Independence Basin, Mexico. Journal of Hydrology, 324(1), 283-300.
Majumdar, D. J. R. 2003. The blue baby syndrome. 8(10), 20-30.
Mandal, B. K., Chowdhury, T. R., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., Lodh, D., Karan, N. K., Dhar, R. K., & Tamili, D. K. J. C. s. 1996. Arsenic in groundwater in seven districts of West Bengal, India–the biggest arsenic calamity in the world. 976-986.
Manning, B. A., & Goldberg, S. 1996. Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal, 60(1), 121-131.
Mapoma, H. W. T., Xie, X., Pi, K., Liu, Y., & Zhu, Y. 2016. Understanding arsenic mobilization using reactive transport modeling of groundwater hydrochemistry in the Datong basin study plot, China. Environmental Science: Processes & Impacts, 18(3), 371-385.
Masue, Y., Loeppert, R. H., & Kramer, T. A. 2007. Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environmental Science and Technology, 41(3), 837-842.
Matisoff, G., Khourey, C. J., Hall, J. F., Varnes, A. W., & Strain, W. H. 1982. The Nature and Source of Arsenic in Northeastern Ohio Ground Water. Groundwater, 20(4), 446-456.
McArthur, J. M., Ravenscroft, P., Safiulla, S., & Thirlwall, M. F. 2001. Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1), 109-117.
McCarty, K. M., Hanh, H. T., & Kim, K. W. 2011. Arsenic geochemistry and human health in South East Asia. Reviews on Environmental Health, 26(1), 71-78.
Morales-Suarez-Varela, M. M., Llopis-Gonzalez, A., & Tejerizo-Perez, M. L. J. E. j. o. e. 1995. Impact of nitrates in drinking water on cancer mortality in Valencia, Spain. 11(1), 15-21.
Neumann, R. B., Ashfaque, K. N., Badruzzaman, A. B. M., Ashraf Ali, M., Shoemaker, J. K., & Harvey, C. F. 2010. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geoscience, 3(1), 46-52.
Neupane, G., Donahoe, R. J., & Arai, Y. 2014. Kinetics of competitive adsorption/desorption of arsenate and phosphate at the ferrihydrite-water interface. Chemical Geology, 368, 31-38.
Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahmanñ, M. J. N. 1998. Arsenic poisoning of Bangladesh groundwater. 395(6700), 338.
Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403-413.
Niinikoski, P., Saraperä, S., Hendriksson, N., & Karhu, J. A. 2016. Geochemical and flow modelling as tools in monitoring managed aquifer recharge. Applied Geochemistry, 74, 33-43.
Nordstrom, D. K., Valentine, S., Ball, J., Plummer, N., & Jones, B. 1984. Partial compilation and revision of basic data in the WATEQ programs.
Otero, N., Torrentó, C., Soler, A., Menció, A., & Mas-Pla, J. 2009. Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: The case of Plana de Vic (Osona, Spain). Agriculture, Ecosystems and Environment, 133(1-2), 103-113.
Pacheco, J., & Cabrera, A. J. H. J. 1997. Groundwater contamination by nitrates in the Yucatan Peninsula, Mexico. 5(2), 47-53.
Parkhurst, D. L., Thorstenson, D. C., & Plummer, N. 1980. PHREEQE : a computer program for geochemical calculations. (80-96).
Paschke, S. S., & Van der Heijde, P. 1996. Overview of Chemical Modeling in Ground Water and Listing of Available Geochemical Models: Colorado School of Mines.
Perkins, T. K., & Johnston, O. C. 1963. A Review of Diffusion and Dispersion in Porous Media. Society of Petroleum Engineers Journal, 3(01), 70-84.
Pierson-Wickmann, A.-C., Aquilina, L., Weyer, C., Molénat, J., & Lischeid, G. 2009. Acidification processes and soil leaching influenced by agricultural practices revealed by strontium isotopic ratios. Geochimica et Cosmochimica Acta, 73(16), 4688-4704.
Plummer, L. N. J. w.-r. i. 1992. Geochemical modeling of water-rock interaction: past, present, future. 23-33.
Polya, D., & Charlet, L. 2009. Environmental science: Rising arsenic risk? Nature Geoscience, 2(6), 383-384.
Postma, D., Pham, T., Sø, H., Mai Lan, V., & Jakobsen, R. 2017. Reactive Transport Modeling of Arsenic Mobilization in Groundwater of the Red River Floodplain, Vietnam (Vol. 17).
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992. Numerical recipes in C (2nd ed.): the art of scientific computing: Cambridge University Press.
Ratnaike, R. N. J. P. m. j. 2003. Acute and chronic arsenic toxicity. 79(933), 391-396.
Raven, K. P., Jain, A., & Loeppert, R. H. 1998. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology, 32(3), 344-349.
Ravenscroft, P., Brammer, H., & Richards, K. 2009. Arsenic pollution: a global synthesis (Vol. 28): John Wiley & Sons.
Rhine, E. D., Phelps, C. D., & Young, L. Y. 2006. Anaerobic arsenite oxidation by novel denitrifying isolates. Environmental Microbiology, 8(5), 899-908.
Richards, L. A., Magnone, D., Sovann, C., Kong, C., Uhlemann, S., Kuras, O., van Dongen, B. E., Ballentine, C. J., & Polya, D. A. 2017. High resolution profile of inorganic aqueous geochemistry and key redox zones in an arsenic bearing aquifer in Cambodia. Science of The Total Environment, 590-591, 540-553.
Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. 2008. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 42(16), 4215-4232.
Rodríguez-Escales, P., van Breukelen, B. M., Vidal-Gavilan, G., Soler, A., & Folch, A. 2014. Integrated modeling of biogeochemical reactions and associated isotope fractionations at batch scale: A tool to monitor enhanced biodenitrification applications. Chemical Geology, 365, 20-29.
Rodríguez-Freire, L., Sun, W., Sierra-Alvarez, R., & Field, J. A. 2012. Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors. Biodegradation, 23(1), 133-143.
Rodríguez, R., Ramos, J. A., & Armienta, A. 2004. Groundwater arsenic variations: The role of local geology and rainfall. Applied Geochemistry, 19(2), 245-250.
Rodvang, S., & Simpkins, W. J. H. J. 2001. Agricultural contaminants in Quaternary aquitards: A review of occurrence and fate in North America. 9(1), 44-59.
Sallantaus, T. 1988. Water quality of peatlands and man''s influence on it.
Schilling, K. E. J. W. E. R. 2002. Occurrence and distribution of ammonium in Iowa groundwater. 74(2), 177-186.
Seitzinger, S. P. 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnology and Oceanography, 33(4part2), 702-724.
Sharif, M. S. U., Davis, R. K., Steele, K. F., Kim, B., Hays, P. D., Kresse, T. M., & Fazio, J. A. 2011. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA. Applied Geochemistry, 26(4), 496-504.
Smedley, P. L., & Kinniburgh, D. G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568.
Sracek, O., Bhattacharya, P., Jacks, G., Gustafsson, J. P., & Von Brömssen, M. 2004. Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry, 19(2), 169-180.
Sridharan, M., & Nathan, D. S. 2018. Chemometric tool to study the mechanism of arsenic contamination in groundwater of Puducherry region, South East coast of India. Chemosphere, 208, 303-315.
Stollenwerk, K. G., Breit, G. N., Welch, A. H., Yount, J. C., Whitney, J. W., Foster, A. L., Uddin, M. N., Majumder, R. K., & Ahmed, N. 2007. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Science of The Total Environment, 379(2-3), 133-150.
Sullivan, C., Tyrer, M., Cheeseman, C. R., & Graham, N. J. D. 2010. Disposal of water treatment wastes containing arsenic - A review. Science of The Total Environment, 408(8), 1770-1778.
Sun, W., Sierra-Alvarez, R., Fernandez, N., Sanz, J. L., Amils, R., Legatzki, A., Maier, R. M., & Field, J. A. 2009. Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures. FEMS Microbiology Ecology, 68(1), 72-85.
Trafford, J., Lawrence, A., Macdonald, D., Nguyen, V. D., Dang, N. T., & Nguyen, T. H. 1996. The effect of urbanisation on the groundwater quality beneath the city of Hanoi, Vietnam.
Tseng, W. P. 1977. Effects and dose response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives, Vol.19, 109-119.
Van Hale, R., & Frew, R. 2010. Rayleigh distillation equations applied to isotopic evolution of organic nitrogen across a continental shelf (Vol. 61).
Vanderborght, J.-P., Folmer, I. M., Aguilera, D. R., Uhrenholdt, T., & Regnier, P. 2007. Reactive-transport modelling of C, N, and O2 in a river–estuarine–coastal zone system: Application to the Scheldt estuary. Marine Chemistry, 106(1), 92-110.
Wagner, S. L., Kounnas, M. Z., Tyree, C. M., Cheng, S., Danks, A. M., Ackermann, E. J., Digregorio, P. J., Tanzi, R. E., Stauderman, K. A., & Velicelebi, G. 2005. Modulators of γ-secretase activity that lower Aβ42 levels without affecting Notch proteolytic processing. 7th International Conference AD/PD, 11.
Wang, S.-W., Liu, C.-W., & Jang, C.-S. 2007. Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry, 22(2), 460-476.
Ward, M. H., Kilfoy, B. A., Weyer, P. J., Anderson, K. E., Folsom, A. R., & Cerhan, J. R. 2010. Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology (Cambridge, Mass.), 21(3), 389-395.
Wedepohl, K. H., Correns, C. W., Shaw, D. M., & Turekian, K. K. 1969. Handbook of geochemistry. Berlin; Heidelberg; New York: Springer-Verlag.
Welch, A. H., Westjohn, D. B., Helsel, D. R., & Wanty, R. B. 2000. Arsenic in ground water of the United States: Occurrence and geochemistry. Ground Water, 38(4), 589-604.
Weng, T.-N., Liu, C.-W., Kao, Y.-H., & Hsiao, S. S.-Y. 2017. Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater. Science of The Total Environment, 578, 167-185.
WHO. 2011. Guidelines for drinking-water quality. WHO chronicle, 38(4), 104-108.
Xie, X., Wang, Y., Ellis, A., Su, C., Li, J., Li, M., & Duan, M. 2013. Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong basin, northern China. Journal of Hydrology, 476, 87-96.
Yanenko, N. N. 1971. The method of fractional steps: Springer.
Yang, W. H., Weber, K. A., & Silver, W. L. 2012. Nitrogen Loss from Soil via Anaerobic Ammonium Oxidation coupled to Iron Reduction (Vol. 5).
Zoller, W. H., Gladney, E. S., & Duce, R. A. 1974. Atmospheric Concentrations and Sources of Trace Metals at the South Pole. Science, 183(4121), 198.
Zumft, W. G. 1997. Cell biology and molecular basis of denitrification? Microbiology and Molecular Biology Reviews, 61(4), 533-616.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊