(44.192.112.123) 您好!臺灣時間:2021/03/07 16:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:越樂昀
研究生(外文):Le-Yun Yueh
論文名稱:Puf6與Loc1對Rpl43蛋白穩定性及轉錄後調控之研究
論文名稱(外文):The study of Puf6 and Loc1 in protein stability and post-transcriptional regulation of Rpl43
指導教授:羅凱尹
指導教授(外文):Kai-Yin Lo
口試委員:陳美瑜冀宏源張麗冠
口試委員(外文):Mei-Yu ChenHung-Yuan ChiLi-Kwan Chang
口試日期:2019-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:核醣體生合成RNA 結合蛋白輔助因子轉錄後調控轉譯調控
DOI:10.6342/NTU201903279
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
啤酒酵母 (Saccharomyces cerevisiae)是個適合研究核醣體生合成的真核模式生物。核醣體是由rRNA與核醣體蛋白所構成,在快速分裂生長期間,為了維持正常核醣體的生理機能,核醣體蛋白會高度表現,同時這些核醣體蛋白表現後需要在細胞中受到調控及保護。本實驗所研究的目標核醣體蛋白,Rpl43,在核醣體的位置上位於約E-site附近。在先前的研究中,我們發現Puf6、Loc1及Rpl43之間在酵母菌中會有蛋白質的交互作用,形成三元複合體。當細胞缺乏Puf6、Loc1的時候,Rpl43核醣蛋白的含量會下降,而在實驗結果顯示出Puf6與Loc1可能會參與並維持Rpl43的穩定性與核醣體的組裝。
為了了解Puf6、Loc1會如何影響Rpl43,我們先去分析新生成的Rpl43在細胞中的穩定性,分析的結果顯示在puf6Δ 及loc1Δ細胞內,Rpl43的穩定性會顯著地降低。且RPL43 mRNA的量在puf6Δ 及loc1Δ皆不會有改變的情形,顯示在RNA層次上,會有其他機制來調控RPL43 生成。以帶有不同RPL43片段的報導基因分析不同片段對表現蛋白質與RNA的影響,實驗結果發現,RPL43B的3’UTR會抑制蛋白質與RNA的生成,而帶有RPL43B 內含子能夠抵銷3’UTR的抑制;RPL43A的3’UTR會增加蛋白質與RNA的生成,而帶有RPL43A 內含子能夠抵銷3’UTR的活化。Puf6的存在與否會影響內含子的調控;Loc1和Rpl43會影響3’UTR的調控。接著,我們以核醣體圖譜分析RPL43 mRNA的轉譯作用,發現puf6Δ 及loc1Δ造成Rpl43蛋白質生成上的影響。這些結果顯示, Puf6與Loc1會結合RPL43 mRNA調控其RNA 並增加其轉譯,並和Rpl43結合,形成複合體保護其穩定性。
Saccharomyces cerevisiae is a good model organism to study ribosome biogenesis. Ribosome is composed of rRNAs and ribosomal proteins. During rapid growth, ribosomal proteins are highly expressed. In order to build up a functional ribosome, the qualities of ribosomal proteins need to be rigorously controlled. Ribosomal protein large subunit 43 (Rpl43) is located nearby the E-site of ribosome. In our previous study, we found Puf6, Loc1, and Rpl43 formed a trimeric complex in Saccharomyces cerevisiae. In the absence of PUF6 or LOC1, Rpl43 protein level was under-accumulated. The data suggests that the functions of Puf6 and Loc1 may correlate with the stability and assembly of Rpl43.
In this study, we further dissected the connections among these three proteins. The stability of free Rpl43 protein decreased significantly both in puf6Δ and loc1Δ. While the level of mature RPL43 mRNA did not change in puf6Δ and loc1Δ, there might be other mechanisms to regulate its mRNA. Different RPL43 reporter genes were constructed to detect the expression of proteins and RNA. We found 3’UTR of RPL43B could repress the expression of RNA and protein, and intron could counteract the repression of 3’UTR in the reporter assay. The 3’UTR of RPL43A could enhance the expression of protein, and intron could remove the enhancement of 3’UTR in the reporter assay. The presence of Puf6 could interfere the regulation of intron. Loc1 and Rpl43 could regulate the 3’UTR. In addition, the translation of RPL43 mRNA decreased in puf6Δ and loc1Δ mutants. The results in this study suggest that Puf6 and Loc1 bound RPL43 mRNA to regulate its transcription and translation. In addition, they formed a complex with free Rpl43 protein to protect its stability.
摘要 ...................................................................................................................... 4
Abstract ................................................................................................................ 5
表目錄 .................................................................................................................. 7
第一章 前言 ......................................................................................................... 8
一、核醣體生合成 ............................................................................................... 8 二、rRNA 的生成與加工: ................................................................................... 8 三、核醣體之組裝: ............................................................................................ 9
3.1. 40S 小次單元的組裝....................................................................................... 10
3.2. 60S 大次單元的組裝....................................................................................... 11 四、核醣體蛋白與其伴護蛋白(Chaperones).......................................................... 12
4.1. 伴護蛋白 (Chaperones) ................................................................................... 13 五、RNA 結合蛋白對 RNA 的調控與其命運 ........................................................ 15
5.1. RNA binding proteins ...................................................................................... 15 5.2. RBPs 結合對 RNA 的調控.............................................................................. 16
5.2.1. 穩定性 (Stability) ...................................................................................... 16 5.2.2. 細胞位置分布 (Localization)................................................................... 17 5.2.3. 表現抑制或活化 (Repression and Activation) ........................................ 17
六、與本研究相關之因子 ................................................................................... 18 6.1. Puf6 和 Loc1 和 Ash1 mRNP complex 的關係 .............................................. 18
6.2. Puf6 和 Loc1 和 60S 核醣體生合成的關係 ................................................... 20
第二章、研究動機 ............................................................................................ 21
第三章、材料與方法 ........................................................................................ 22
1. 菌株與質體 ................................................................................................. 22
2. 突變株建構 ................................................................................................. 22
2.1 膠體電泳 (Gel electrophoresis)與 DNA 電泳膠體純化 (Gel recovery) .... 22
2.2 限制脢切割 (Enzyme digestion)與接合作用(Ligation) ............................. 22
2.3 Inverse PCR 突變株建構 (Inverse PCR)..................................................... 22
生長測試 (Growth test)................................................................................. 23
啤酒酵母菌轉型作用 (Yeast transformation).................................................... 23
蛋白質相關實驗 .......................................................................................... 23
5.1 蛋白萃取液的製備 (NaOH 破菌法) ........................................................... 23
5.2 西方墨點法 (Western blotting ) .................................................................. 23
5.3 免疫沈澱法 (Immunoprecipitation) ............................................................ 24
5.4 蛋白質穩定度 (Protein stability)分析......................................................... 24
啤酒酵母菌 RNA 表現量之測定 .................................................................... 25
6.1 酵母菌 RNA 的萃取 (RNA extraction)....................................................... 25
6.2 DNase 處理 (TURBOTM DNase Treatment)................................................ 25
6.3 反轉錄作用 (Reverse Transcription)........................................................... 25
6.4 即時聚合脢鏈鎖反應 (Real-time polymerase chain reaction) ................... 26
6.5 RNA 免疫沈澱法 (RNA-Immunoprecipitation) ......................................... 26
7.核醣體圖譜分析 (polysome profile) ................................................................ 27
7.1 RNA 於 polysome 分離樣品之純化 ........................................................... 27
7.2 蛋白質於 polysome 分佈的分析................................................................. 27
第四章、實驗結果 ............................................................................................ 28
一、Puf6 與 Loc1 維持 Rpl43 核醣體蛋白的穩性 ............................................... 28
二、Rpl43 的表現及含量受啟動子與其他因素影響 .............................................. 29
三、RPL43 上的內含子和 3’UTR 會影響 mRNA 的現 ........................................ 30
四、Puf6 與 Loc1 會影響 RPL43 上內含子和 3’UTR 的調控 .................................. 32
五、大量表現 Puf6、Loc1、Rpl43 對 RPL43 內含子和 3’UTR 的調控的影響 .......... 34
六、Puf6 與 Loc1 改變 RPL43 mRNA 的轉譯作用 ................................................. 36
第五章、討論................................................................................................. 37
5.1. 核醣體蛋白的生成調控 ................................................................................ 37
5.2. 和其他已知核醣體蛋白的 Intron、3’UTR 調控情形較 ................................. 39
5.3. Puf6、Loc1 調控 Rpl43 表現量的機制、及可能重義 ................................41
第六章、結論 .................................................................................................... 43
第七章、參考文獻 ............................................................................................ 45
Armache, J.P., A. Jarasch, A.M. Anger, E. Villa, T. Becker, S. Bhushan, F. Jossinet, M. Habeck, G. Dindar, S. Franckenberg, V. Marquez, T. Mielke, M. Thomm, O. Berninghausen, B. Beatrix, J. Soding, E. Westhof, D.N. Wilson, and R. Beckmann. 2010. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Proc Natl Acad Sci U S A. 107:19748-19753.
Badis, G., C. Saveanu, M. Fromont-Racine, and A. Jacquier. 2004. Targeted mRNA degradation by deadenylation-independent decapping. Mol Cell. 15:5-15.
Bange, G., G. Murat, I. Sinning, E. Hurt, and D. Kressler. 2013. New twist to nuclear import: When two travel together. Commun Integr Biol. 6:e24792.
Barrett, L.W., S. Fletcher, and S.D. Wilton. 2012. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 69:3613-3634.
Ben-Shem, A., N. Garreau de Loubresse, S. Melnikov, L. Jenner, G. Yusupova, and M. Yusupov. 2011. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 334:1524-1529.
Bohl, F., C. Kruse, A. Frank, D. Ferring, and R.P. Jansen. 2000. She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J. 19:5514-5524.
Boria, I., E. Garelli, H.T. Gazda, A. Aspesi, P. Quarello, E. Pavesi, D. Ferrante, J.J. Meerpohl, M. Kartal, L. Da Costa, A. Proust, T. Leblanc, M. Simansour, N. Dahl, A.S. Frojmark, D. Pospisilova, R. Cmejla, A.H. Beggs, M.R. Sheen, M. Landowski, C.M. Buros, C.M. Clinton, L.J. Dobson, A. Vlachos, E. Atsidaftos, J.M. Lipton, S.R. Ellis, U. Ramenghi, and I. Dianzani. 2010. The ribosomal basis of Diamond-Blackfan Anemia: mutation and database update. Hum Mutat. 31:1269-1279.
Castle, C.D., R. Sardana, V. Dandekar, V. Borgianini, A.W. Johnson, and C. Denicourt. 2013. Las1 interacts with Grc3 polynucleotide kinase and is required for ribosome synthesis in Saccharomyces cerevisiae. Nucleic Acids Res. 41:1135-1150.
Chartrand, P., X.H. Meng, R.H. Singer, and R.M. Long. 1999. Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Curr Biol. 9:333-336.
Chartrand, P., R.H. Singer, and R.M. Long. 2001. RNP localization and transport in yeast. Annu Rev Cell Dev Biol. 17:297-310.
Cho, P.F., C. Gamberi, Y.A. Cho-Park, I.B. Cho-Park, P. Lasko, and N. Sonenberg. 2006. Cap-dependent translational inhibition establishes two opposing morphogen gradients in Drosophila embryos. Curr Biol. 16:2035-2041.
Chritton, J.J., and M. Wickens. 2010. Translational repression by PUF proteins in vitro. RNA. 16:1217-1225.
Darzacq, X., E. Powrie, W. Gu, R.H. Singer, and D. Zenklusen. 2003. RNA asymmetric distribution and daughter/mother differentiation in yeast. Curr Opin Microbiol. 6:614-620.
de la Cruz, J., K. Karbstein, and J.L. Woolford, Jr. 2015. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem. 84:93-129.
Decatur, W.A., and M.J. Fournier. 2002. rRNA modifications and ribosome function. Trends Biochem Sci. 27:344-351.
Deng, Y., R.H. Singer, and W. Gu. 2008. Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev. 22:1037-1050.
Dez, C., C. Froment, J. Noaillac-Depeyre, B. Monsarrat, M. Caizergues-Ferrer, and Y. Henry. 2004. Npa1p, a component of very early pre-60S ribosomal particles, associates with a subset of small nucleolar RNPs required for peptidyl transferase center modification. Mol Cell Biol. 24:6324-6337.
Du, T.G., S. Jellbauer, M. Muller, M. Schmid, D. Niessing, and R.P. Jansen. 2008. Nuclear transit of the RNA-binding protein She2 is required for translational control of localized ASH1 mRNA. EMBO Rep. 9:781-787.
Duy, D.L., Y. Suda, and K. Irie. 2017. Cytoplasmic deadenylase Ccr4 is required for translational repression of LRG1 mRNA in the stationary phase. PLoS One. 12:e0172476.
Edwards, T.A., S.E. Pyle, R.P. Wharton, and A.K. Aggarwal. 2001. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell. 105:281-289.
Fatica, A., A.D. Cronshaw, M. Dlakic, and D. Tollervey. 2002. Ssf1p prevents premature processing of an early pre-60S ribosomal particle. Mol Cell. 9:341-351.
Fatica, A., M. Oeffinger, M. Dlakic, and D. Tollervey. 2003. Nob1p is required for cleavage of the 3'' end of 18S rRNA. Mol Cell Biol. 23:1798-1807.
Fatica, A., D. Tollervey, and M. Dlakic. 2004. PIN domain of Nob1p is required for D-site cleavage in 20S pre-rRNA. RNA. 10:1698-1701.
Fernandez-Pevida, A., D. Kressler, and J. de la Cruz. 2015. Processing of preribosomal RNA in Saccharomyces cerevisiae. Wiley Interdiscip Rev RNA. 6:191-209.
Gasse, L., D. Flemming, and E. Hurt. 2015. Coordinated Ribosomal ITS2 RNA Processing by the Las1 Complex Integrating Endonuclease, Polynucleotide Kinase, and Exonuclease Activities. Mol Cell. 60:808-815.
Geerlings, T.H., J.C. Vos, and H.A. Raue. 2000. The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5''-->3'' exonucleases. RNA. 6:1698-1703.
Glisovic, T., J.L. Bachorik, J. Yong, and G. Dreyfuss. 2008. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582:1977-1986.
Goldstrohm, A.C., B.A. Hook, D.J. Seay, and M. Wickens. 2006. PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol. 13:533-539.
Gonsalvez, G.B., J.L. Little, and R.M. Long. 2004. ASH1 mRNA anchoring requires reorganization of the Myo4p-She3p-She2p transport complex. J Biol Chem. 279:46286-46294.
Gonzalez, I., S.B. Buonomo, K. Nasmyth, and U. von Ahsen. 1999. ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation. Curr Biol. 9:337-340.
Gu, W., Y. Deng, D. Zenklusen, and R.H. Singer. 2004. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev. 18:1452-1465.
Harnpicharnchai, P., J. Jakovljevic, E. Horsey, T. Miles, J. Roman, M. Rout, D. Meagher, B. Imai, Y. Guo, C.J. Brame, J. Shabanowitz, D.F. Hunt, and J.L. Woolford, Jr. 2001. Composition and functional characterization of yeast 66S ribosome assembly intermediates. Mol Cell. 8:505-515.
Ho, J.H., G. Kallstrom, and A.W. Johnson. 2000. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol. 151:1057-1066.
Hook, B.A., A.C. Goldstrohm, D.J. Seay, and M. Wickens. 2007. Two yeast PUF proteins negatively regulate a single mRNA. J Biol Chem. 282:15430-15438.
Iouk, T.L., J.D. Aitchison, S. Maguire, and R.W. Wozniak. 2001. Rrb1p, a yeast nuclear WD-repeat protein involved in the regulation of ribosome biosynthesis. Mol Cell Biol. 21:1260-1271.
Irie, K., T. Tadauchi, P.A. Takizawa, R.D. Vale, K. Matsumoto, and I. Herskowitz. 2002. The Khd1 protein, which has three KH RNA-binding motifs, is required for proper localization of ASH1 mRNA in yeast. EMBO J. 21:1158-1167.
Jakel, S., J.M. Mingot, P. Schwarzmaier, E. Hartmann, and D. Gorlich. 2002. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J. 21:377-386.
Johnson, A.W. 1997. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol Cell Biol. 17:6122-6130.
Johnson, A.W. 2014. Ribosomes: lifting the nuclear export ban. Curr Biol. 24:R127-129.
Keene, J.D. 2001. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc Natl Acad Sci U S A. 98:7018-7024.
Klinge, S., F. Voigts-Hoffmann, M. Leibundgut, S. Arpagaus, and N. Ban. 2011. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science. 334:941-948.
Klinge, S., F. Voigts-Hoffmann, M. Leibundgut, and N. Ban. 2012. Atomic structures of the eukaryotic ribosome. Trends Biochem Sci. 37:189-198.
Koch, B., V. Mitterer, J. Niederhauser, T. Stanborough, G. Murat, G. Rechberger, H. Bergler, D. Kressler, and B. Pertschy. 2012. Yar1 protects the ribosomal protein Rps3 from aggregation. J Biol Chem. 287:21806-21815.
Komili, S., N.G. Farny, F.P. Roth, and P.A. Silver. 2007. Functional specificity among ribosomal proteins regulates gene expression. Cell. 131:557-571.
Konikkat, S., and J.L. Woolford, Jr. 2017. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochem J. 474:195-214.
Kressler, D., G. Bange, Y. Ogawa, G. Stjepanovic, B. Bradatsch, D. Pratte, S. Amlacher, D. Strauss, Y. Yoneda, J. Katahira, I. Sinning, and E. Hurt. 2012. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science. 338:666-671.
Kressler, D., E. Hurt, and J. Bassler. 2010. Driving ribosome assembly. Biochim Biophys Acta. 1803:673-683.
Kressler, D., D. Roser, B. Pertschy, and E. Hurt. 2008. The AAA ATPase Rix7 powers progression of ribosome biogenesis by stripping Nsa1 from pre-60S particles. J Cell Biol. 181:935-944.
Kufel, J., B. Dichtl, and D. Tollervey. 1999. Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3'' ETS but not the 5'' ETS. RNA. 5:909-917.
Lafontaine, D., J. Delcour, A.L. Glasser, J. Desgres, and J. Vandenhaute. 1994. The DIM1 gene responsible for the conserved m6(2)Am6(2)A dimethylation in the 3''-terminal loop of 18 S rRNA is essential in yeast. J Mol Biol. 241:492-497.
Lamanna, A.C., and K. Karbstein. 2009. Nob1 binds the single-stranded cleavage site D at the 3''-end of 18S rRNA with its PIN domain. Proc Natl Acad Sci U S A. 106:14259-14264.
Lebaron, S., C. Schneider, R.W. van Nues, A. Swiatkowska, D. Walsh, B. Bottcher, S. Granneman, N.J. Watkins, and D. Tollervey. 2012. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol. 19:744-753.
Li, Z., A.G. Paulovich, and J.L. Woolford, Jr. 1995. Feedback inhibition of the yeast ribosomal protein gene CRY2 is mediated by the nucleotide sequence and secondary structure of CRY2 pre-mRNA. Mol Cell Biol. 15:6454-6464.
Long, R.M., W. Gu, E. Lorimer, R.H. Singer, and P. Chartrand. 2000. She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J. 19:6592-6601.
Long, R.M., W. Gu, X. Meng, G. Gonsalvez, R.H. Singer, and P. Chartrand. 2001. An exclusively nuclear RNA-binding protein affects asymmetric localization of ASH1 mRNA and Ash1p in yeast. J Cell Biol. 153:307-318.
Lygerou, Z., C. Allmang, D. Tollervey, and B. Seraphin. 1996. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science. 272:268-270.
Matoulkova, E., E. Michalova, B. Vojtesek, and R. Hrstka. 2012. The role of the 3'' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 9:563-576.
Milkereit, P., O. Gadal, A. Podtelejnikov, S. Trumtel, N. Gas, E. Petfalski, D. Tollervey, M. Mann, E. Hurt, and H. Tschochner. 2001. Maturation and intranuclear transport of pre-ribosomes requires Noc proteins. Cell. 105:499-509.
Miller, M.A., and W.M. Olivas. 2011. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA. 2:471-492.
Mitterer, V., G. Murat, S. Rety, M. Blaud, L. Delbos, T. Stanborough, H. Bergler, N. Leulliot, D. Kressler, and B. Pertschy. 2016. Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. Nat Commun. 7:10336.
Moabbi, A.M., N. Agarwal, B. El Kaderi, and A. Ansari. 2012. Role for gene looping in intron-mediated enhancement of transcription. Proc Natl Acad Sci U S A. 109:8505-8510.
Niedner, A., M. Muller, B.T. Moorthy, R.P. Jansen, and D. Niessing. 2013. Role of Loc1p in assembly and reorganization of nuclear ASH1 messenger ribonucleoprotein particles in yeast. Proc Natl Acad Sci U S A. 110:E5049-5058.
Nissan, T.A., J. Bassler, E. Petfalski, D. Tollervey, and E. Hurt. 2002. 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J. 21:5539-5547.
Oeffinger, M., D. Zenklusen, A. Ferguson, K.E. Wei, A. El Hage, D. Tollervey, B.T. Chait, R.H. Singer, and M.P. Rout. 2009. Rrp17p is a eukaryotic exonuclease required for 5'' end processing of Pre-60S ribosomal RNA. Mol Cell. 36:768-781.
Parenteau, J., M. Durand, G. Morin, J. Gagnon, J.F. Lucier, R.J. Wellinger, B. Chabot, and S.A. Elela. 2011. Introns within ribosomal protein genes regulate the production and function of yeast ribosomes. Cell. 147:320-331.
Paulovich, A.G., J.R. Thompson, J.C. Larkin, Z. Li, and J.L. Woolford, Jr. 1993. Molecular genetics of cryptopleurine resistance in Saccharomyces cerevisiae: expression of a ribosomal protein gene family. Genetics. 135:719-730.
Pausch, P., U. Singh, Y.L. Ahmed, B. Pillet, G. Murat, F. Altegoer, G. Stier, M. Thoms, E. Hurt, I. Sinning, G. Bange, and D. Kressler. 2015. Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nat Commun. 6:7494.
Pelletier, J., J. Graff, D. Ruggero, and N. Sonenberg. 2015. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res. 75:250-263.
Pertschy, B., C. Saveanu, G. Zisser, A. Lebreton, M. Tengg, A. Jacquier, E. Liebminger, B. Nobis, L. Kappel, I. van der Klei, G. Hogenauer, M. Fromont-Racine, and H. Bergler. 2007. Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1. Mol Cell Biol. 27:6581-6592.
Petibon, C., J. Parenteau, M. Catala, and S.A. Elela. 2016. Introns regulate the production of ribosomal proteins by modulating splicing of duplicated ribosomal protein genes. Nucleic Acids Res. 44:3878-3891.
Pillet, B., J.J. Garcia-Gomez, P. Pausch, L. Falquet, G. Bange, J. de la Cruz, and D. Kressler. 2015. The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site. PLoS Genet. 11:e1005565.
Preissler, S., and E. Deuerling. 2012. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem Sci. 37:274-283.
Sahasranaman, A., J. Dembowski, J. Strahler, P. Andrews, J. Maddock, and J.L. Woolford, Jr. 2011. Assembly of Saccharomyces cerevisiae 60S ribosomal subunits: role of factors required for 27S pre-rRNA processing. EMBO J. 30:4020-4032.
Saibil, H. 2013. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 14:630-642.
Saveanu, C., D. Bienvenu, A. Namane, P.E. Gleizes, N. Gas, A. Jacquier, and M. Fromont-Racine. 2001. Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. EMBO J. 20:6475-6484.
Schutz, S., U. Fischer, M. Altvater, P. Nerurkar, C. Pena, M. Gerber, Y. Chang, S. Caesar, O.T. Schubert, G. Schlenstedt, and V.G. Panse. 2014. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. Elife. 3:e03473.
Simoff, I., H. Moradi, and O. Nygard. 2009. Functional characterization of ribosomal protein L15 from Saccharomyces cerevisiae. Curr Genet. 55:111-125.
Tadauchi, T., K. Matsumoto, I. Herskowitz, and K. Irie. 2001. Post-transcriptional regulation through the HO 3''-UTR by Mpt5, a yeast homolog of Pumilio and FBF. EMBO J. 20:552-561.
Tang, L., A. Sahasranaman, J. Jakovljevic, E. Schleifman, and J.L. Woolford, Jr. 2008. Interactions among Ytm1, Erb1, and Nop7 required for assembly of the Nop7-subcomplex in yeast preribosomes. Mol Biol Cell. 19:2844-2856.
Ulbrich, C., M. Diepholz, J. Bassler, D. Kressler, B. Pertschy, K. Galani, B. Bottcher, and E. Hurt. 2009. Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits. Cell. 138:911-922.
Urbinati, C.R., G.B. Gonsalvez, J.P. Aris, and R.M. Long. 2006. Loc1p is required for efficient assembly and nuclear export of the 60S ribosomal subunit. Mol Genet Genomics. 276:369-377.
Vilardell, J., and J.R. Warner. 1997. Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA. Mol Cell Biol. 17:1959-1965.
Wang, S., H. Sakai, and M. Wiedmann. 1995. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J Cell Biol. 130:519-528.
Watkins, N.J., and M.T. Bohnsack. 2012. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA. 3:397-414.
Wharton, R.P., and A.K. Aggarwal. 2006. mRNA regulation by Puf domain proteins. Sci STKE. 2006:pe37.
Wickens, M., D.S. Bernstein, J. Kimble, and R. Parker. 2002. A PUF family portrait: 3''UTR regulation as a way of life. Trends Genet. 18:150-157.
Woolford, J.L., Jr., and S.J. Baserga. 2013. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics. 195:643-681.
Wreden, C., A.C. Verrotti, J.A. Schisa, M.E. Lieberfarb, and S. Strickland. 1997. Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA. Development. 124:3015-3023.
Yang, Y.T., Y.H. Ting, K.J. Liang, and K.Y. Lo. 2016. The Roles of Puf6 and Loc1 in 60S Biogenesis Are Interdependent, and Both Are Required for Efficient Accommodation of Rpl43. J Biol Chem. 291:19312-19323.
Yao, W., D. Roser, A. Kohler, B. Bradatsch, J. Bassler, and E. Hurt. 2007. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2. Mol Cell. 26:51-62.
梁凱任(2017)。核醣體蛋白Rpl43的功能探討及和Puf6、Loc1的結合位分析。國立臺灣大學農業化學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/62sm4y
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔