|
1.Lin, C.-K. and C.-Y. Chen, PiDNA: predicting protein–DNA interactions with structural models. Nucleic Acids Research, 2013. 41(W1): p. W523-W530. 2.Bailey, T.L., et al., MEME Suite: tools for motif discovery and searching. Nucleic Acids Research, 2009. 37(suppl_2): p. W202-W208. 3.Matys, V., et al., TRANSFAC ® : transcriptional regulation, from patterns to profiles. Nucleic Acids Research, 2003. 31(1): p. 374-378. 4.Alipanahi, B., et al., Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 2015. 33: p. 831. 5.The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 2004. 306(5696): p. 636. 6.Park, P.J., ChIP–seq: advantages and challenges of a maturing technology. Nature Reviews Genetics, 2009. 10: p. 669. 7.Bernstein, F.C., et al., The protein data bank: A computer-based archival file for macromolecular structures. Journal of Molecular Biology, 1977. 112(3): p. 535-542. 8.McGinnis, S. and T.L. Madden, BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 2004. 32(suppl_2): p. W20-W25. 9.Zhang, Y. and J. Skolnick, TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 2005. 33(7): p. 2302-2309. 10.Crick, F., Central Dogma of Molecular Biology. Nature, 1970. 227(5258): p. 561-563. 11.Gonzalez, D.H., Introduction to transcription factor structure and function, in Plant Transcription Factors. 2016, Elsevier. p. 3-11. 12.Hollenhorst, P.C., L.P. McIntosh, and B.J. Graves, Genomic and Biochemical Insights into the Specificity of ETS Transcription Factors. Annual Review of Biochemistry, 2011. 80(1): p. 437-471. 13.Hsu, C.-M., C.-Y. Chen, and B.-J. Liu, WildSpan: mining structured motifs from protein sequences. Algorithms for Molecular Biology, 2011. 6(1): p. 6. 14.Lis, M. and D. Walther, The orientation of transcription factor binding site motifs in gene promoter regions: does it matter? BMC Genomics, 2016. 17(1): p. 185. 15.Bank, P.D., Protein data bank. Nature New Biol, 1971. 233: p. 223. 16.Pietrokovski, S., Searching Databases of Conserved Sequence Regions by Aligning Protein Multiple-Alignments. Nucleic Acids Research, 1996. 24(19): p. 3836-3845. 17.Wang, T. and G.D. Stormo, Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics, 2003. 19(18): p. 2369-2380. 18.Schones, D.E., P. Sumazin, and M.Q. Zhang, Similarity of position frequency matrices for transcription factor binding sites. Bioinformatics, 2004. 21(3): p. 307-313. 19.Gupta, S., et al., Quantifying similarity between motifs. Genome biology, 2007. 8(2): p. R24. 20.Skolnick, J., J.S. Fetrow, and A. Kolinski, Structural genomics and its importance for gene function analysis. Nature biotechnology, 2000. 18(3): p. 283. 21.Baker, D. and A. Sali, Protein structure prediction and structural genomics. Science, 2001. 294(5540): p. 93-96. 22.Zhang, Y. and J. Skolnick, Scoring function for automated assessment of protein structure template quality. Proteins: Structure, Function, and Bioinformatics, 2004. 57(4): p. 702-710. 23.Levitt, M. and M. Gerstein, A unified statistical framework for sequence comparison and structure comparison. Proceedings of the National Academy of sciences, 1998. 95(11): p. 5913-5920. 24.Gordân, R., et al., Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell reports, 2013. 3(4): p. 1093-1104. 25.R Development Core Team, R., R: A language and environment for statistical computing. 2011, R foundation for statistical computing Vienna, Austria. 26.Xu, J. and Y. Zhang, How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics, 2010. 26(7): p. 889-895.
|