跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/14 10:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林奇鴻
研究生(外文):Chi-Hung Lin
論文名稱:超甜玉米果穗品質變化與冠層微氣象之相關性分析
論文名稱(外文):Dynamic Relationship Between Sweet Corn Quality and Canopy Microclimate in Taiwan
指導教授:盧虎生盧虎生引用關係
指導教授(外文):Huu-Sheng Lur
口試委員:謝光照劉力瑜黃文理
口試日期:2019-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:98
中文關鍵詞:超甜玉米智慧農業果穗品質氣象因子果穗品質與氣象因子之相關性
DOI:10.6342/NTU201901901
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超甜玉米於106年度果菜批發市場的產值已達5億新台幣,屬於重要之雜糧作物。於終年栽培下,部分月份之氣象因子常對果穗品質造成負面影響,導致果穗商品價值下降。然而,國內探討氣象因子與果穗品質變化之相關文獻仍有所欠缺,導致田間管理者發現果穗品質受損時,卻無本所依。因此,本研究以超甜玉米品種白美人為主,並以夏強與華珍為輔,分別於雲林縣內六個試驗地區設置微氣象站,收集田間冠層的溫度、濕度、日照量及雨量資料,同時分析果穗充實期間之果穗長度、寬度與重量及穎果重量、含水量與糖分含量,以期了解各氣象因子對超甜玉米果穗品質與產量的影響。結果顯示,由冠層微氣象數據發現,各氣象因子數值均和大氣局氣象測站數值具顯著差異,顯示冠層微氣象數據能反映更真實的冠層氣象因子。果穗品質分析結果發現,2月播種的超甜玉米果穗重、穗長、穗徑、單粒鮮重及單粒乾重皆顯著高於其他月分,而在7月均顯著低於其他月份。研究亦發現,蔗糖含量與產量、穗重及穗徑呈顯著正相關,而與葡萄糖與果糖含量呈顯著負相關,顯示果穗生長受限可能會降低葡萄糖與果糖同化成蔗糖的現象。果穗品質與雲林地區氣象因子的相關性分析顯示,在全生育期間,我們發現日射量的提升對於果穗品質而言是有利的,而總雨量小於200mm的條件下,均溫20-22 ℃與平均日射量15-18 MJ/m2的綜合條件下,果穗具有顯著較大的外型,且穎果甜度適中;均溫22-24 ℃與平均日射量18-21 MJ/m2的環境時,穎果甜味較高,期望本研究界定出的氣象因子範圍可供超甜玉米智能專家系統之參考。
Although sweet corn is a major crop in Taiwan, the economic value on sweet corn production has suffered a great loss due to the unstable quality among different planting seasons, moreover, only few research discussed the relationship between sweet corn quality and canopy microclimate. Therefore, this study was undertaken to determine the dynamic relationship between sweet corn quality and canopy microclimate. Focus on sweet corns with shrunken-2 (sh2) allele, field data including ear physical property and kernel sugar content, which covered different planting seasons were collected from six different regions. Additionally, canopy microclimate sensors were used to collect real time weather data, including temperature, humidity, precipitation and solar radiation. In our result, weather data showed that canopy weather was different from weather station including higher canopy daily maximum, lower minimum temperature, higher solar radiation, and unstable relative humidity and total rainfall, thus strengthens the urgent need to monitoring canopy environment through field sensors. From the relationship between each quality aspect, ear weight and ear width shared significant positive correlation with sucrose content, while shared significant negative correlation with glucose and fructose content, suggesting the limitation of ear development may reduce sucrose synthesis from glucose and fructose.
Based on the dynamic relationship between quality and canopy microclimate, we propose the two optimal climate for sweet corn production, one is the whole growing season with 20 – 22 ℃ average temperature, 15-18 MJ/m2 average solar radiation and accumulate precipitation under 200 mm, and the other is the whole growing season with 22 – 24 ℃ average temperature, 18-21 MJ/m2 average solar radiation and accumulate precipitation under 200 mm. The former has the best corn ear physical property and normal kernel sugar content, and the latter has normal physical property and best kernel sugar content. Taken the result together, we report the dynamic relationship between quality and each canopy microclimate factors; propose sweet corn quality prediction model considering canopy microclimate; and provide reference to define suitable area for sweet corn production in Taiwan.
致謝 I
中文摘要 II
英文摘要 III
圖目錄 VIII
表目錄 X
第一章 試驗背景與目的 1
第二章 前人研究 2
2.1 超甜玉米國內生產概況與挑戰 2
2.2 超甜玉米生長與果穗之形成 3
2.3 超甜玉米果穗品質之形成 3
2.3.1 外觀與食味品質 3
2.3.2 果穗充實期間穎果成分變化 4
2.3.3 收穫適期 5
2.4 氣象因子與超甜玉米品質之形成 6
2.4.1 溫度 6
2.4.2 積溫 7
2.4.3 雨量 7
2.4.4 日射量 8
2.5 智慧農業與玉米專家系統 9
第三章 試驗推論與研究策略 11
第四章 材料與方法 13
4.1 試驗材料 13
4.2 試驗田區與終年栽培 13
4.2.1 試驗田區 13
4.2.2 終年栽培 14
4.3 試驗田區氣象調查 15
4.3.1 冠層微氣象調查 15
4.3.2 中央氣象局之氣象測站資料收集 16
4.4 果穗生育階段判定 19
4.5 積溫計算 25
4.6 品質分析 26
4.6.1 採樣方式 26
4.6.2 果穗物理品質測定 26
4.6.3 果穗化學成分分析 26
4.6.4 總糖與甜味分數測定 28
4.6.5 雷達圖之品質分數計算 28
4.7 統計分析 29
第五章 結果 30
5.1 冠層微氣象與氣象測站比較 30
5.2 全年度超甜玉米試驗田區微氣象變化 36
5.3 超甜玉米在各播種月份達特定果穗生長階段的播種後天數與所需積溫預測 41
5.4 終年超甜玉米果穗產量品質的變化 44
5.4.1 收穫天數 44
5.4.2 產量 44
5.4.3 果穗採收期的果穗品質 44
5.4.4 果穗充實期間的品質動態變化 50
5.4.5 白美人果穗品質間的相關性比較 55
5.5 白美人果穗品質與微氣象的回歸分析 58
5.5.1 果穗品質與氣象因子之回歸分析 58
5.5.2 白美人果穗品質與全生育期均溫的回歸分析 73
5.5.3 白美人果穗品質與全生育期的氣象因子之回歸分析 76
5.6 白美人最佳果穗品質與氣象因子條件之界定 79
第六章 討論 82
6.1 冠層相對濕度與溫度之相互影響 82
6.2 積溫判斷收穫適期的優點與預估收穫適期的重要性 83
6.3 超甜玉米品種間的果穗物理品質在夏作間的變化 84
6.4 蔗糖含量與果穗發育之正相關性 85
6.5 超甜玉米幼苗生長期對逆境的高敏感性導致果穗收穫適期的果穗品質下降 86
6.6 日射量提升果穗品質之推論 87
6.7 硬度與氣象因子之關係 88
第七章 總結與未來展望 89
第八章 參考文獻 92
何松,程昕昕(2015)。超甜玉米乳熟期主營養成分動態分析。安徽科技學院學報 29: 30-34。
呂秀英,呂椿棠(2006)。作物專家系統的建構與挑戰。作物、環境與生物資訊 3: 40-50。 Q
林晉卿,吳炎融,黃瑞彰,林經偉(2005)。甜玉米之合理化施肥技術。臺南區農業專訊 53: 16-19。
劉祥霖(2009)。水稻種子發芽及幼苗期胚中澱粉累積及蔗糖轉運之研究。國立臺灣大學農藝學研究所碩士論文。
莊豐鳴(2013)。植冠微氣象在高溫及不同栽培密度下對水稻產量及品質之影響。國立臺灣大學農藝學研究所碩士論文。
陳筱鈞(2013)。台灣不同栽培區氣象因子與小麥品質間之相關性研究。國立臺灣大學農藝學研究所碩士論文。
游添榮(2003)。台灣甜玉米的產銷現況。台南區農業專訊 44: 19-21.
楊智凱,楊舒涵(2016)。以智慧科技邁向台灣農業4.0時代。農政與農情 289: 6-11.
趙福成,景立權,陸大雷,王桂躍,陸衛平(2014)。超甜玉米籽粒糖分積累和蔗糖代謝酶活性動態變化。核農學報 28: 2230-2237.
劉紹國,謝光照(2012)。超甜玉米品種間遺傳距離與產量之相關性。台灣農業研究 61: 186-195.
劉鵬,胡昌浩,董樹亭,王空軍,張吉旺(2003)。甜質型和普通型玉米籽粒發育過程中糖組分比較研究。中國農業科學 52: 764-769.
樂素菊,肖德興,劉鵬飛,曾慕衡,王偉權,王曉明(2011)。超甜玉米果皮結構與籽粒柔嫩性的關係。作物學報 37: 2111-2116.
蔡秀隆,朱德民(1995)。淹水對玉米生長和發育的影響。雜糧作物生產技術改進研討會專刊: 73-88.
鄭榮瑞,詹碧連,盧子淵,曾清田(1991)。甜玉米保鮮之研究一預冷條件之探討建立與應用。臺南區農業改良場研究彙報 26: 32-44.
謝光照(2005)。玉米不同遺傳背景與胚乳型對果皮厚度之影響。台灣農業研究 54: 227-234.
謝光照(2011)。逆境對玉米生長產量之影響與育種及栽培因應之道。因應氣候變遷作物育種及生產環境管理研討會專刊: 79-104.
Allen, R.G., L.S. Pereira, D. Raes and M. Smith. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300: D05109.
Barnabás, B., K. Jäger, A. Fehér and environment. 2008. The effect of drought and heat stress on reproductive processes in cereals. J Plant, cell 31: 11-38.
Ben-Asher, J., A.G. y Garcia and G. Hoogenboom. 2008. Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). J Photosynthetica 46: 595-603.
Bird, I.F., M.J. Cornelius and A.J. Keys. 1977. Effects of temperature on photosynthesis by maize and wheat. Journal of Experimental Botany 28: 519-524.
Burhan and Kara. 2011. Fresh ear yield and growing degree-days of sweet corn in different sowing dates in southwestern anatolia region. Turkish Journal of Field Crops 16: 166-171.
Cavero, J., E. Medina, M. Puig and A. Martínez-Cob. 2009. Sprinkler irrigation changes maize canopy microclimate and crop water status, transpiration, and temperature. Agronomy Journal 101: 854-864.
Chattopadhyay, S., U. Raychaudhuri and R. Chakraborty. 2014. Artificial sweeteners – a review. Journal of Food Science Technology 51: 611-621.
Cheikh, N. and R. Jones. 1995. Heat stress effects on sink activity of developing maize kernels grown in vitro. J Physiologia Plantarum 95: 59-66.
Chen, J., W. Xu, J.J. Burke and Z. Xin. 2010. Role of phosphatidic acid in high temperature tolerance in maize. Crop science 50: 2506-2515.
Cicchino, M., J.I.R. Edreira, M. Uribelarrea and M.E. Otegui. 2010. Heat stress in field-grown maize: Response of physiological determinants of grain yield. 50: 1438-1448.
Cárcova, J. and M.E. Otegui. 2001. Ear temperature and pollination timing effects on maize kernel set. Crop science 41: 1809-1815.
Commuri, P.D. and R.J. Jones. 2001. High temperatures during endosperm cell division in maize. 41: 1122-1130.
Creech, R.G. 1965. Genetic control of carbohydrate synthesis in maize endosperm. Genetics 52: 1175-1186.
Daniel, L., I. Bajtay and I. Gulyásné. 1988. Quality breeding in sweet corn International Society for Horticultural Science (ISHS), Leuven, Belgium. p. 143-148.
Dupuis, I. and C. Dumas. 1990. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol 94: 665-670.
Edreira, J.R. and M.E. Otegui. 2013. Heat stress in temperate and tropical maize hybrids: A novel approach for assessing sources of kernel loss in field conditions. Field Crops Research 142: 58-67.
Feigenbaum, E.A. 1977. The art of artificial intelligence. 1. Themes and case studies of knowledge engineering. Stanford Univ CA Dept of Computer Science.
Herrero, M.P. and R. Johnson. 1980. High temperature stress and pollen viability of maize 1. Crop science 20: 796-800.
Herrero, M.P. and R. Johnson. 1981. Drought stress and its effects on maize reproductive systems 1. Crop Science 21: 105-110.
Inoue and Yoshio. 1987. Remote-monitoring of physiological-ecological status of crops: II. Corn canopy temperature and its relations with climatic factors. Japanese Journal of Crop Science 56: 30-37.
Irmak, S., D.Z. Haman and R. Bastug. 2000. Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal 92: 1221-1227.
Jackson, R.D., S.B. Idso, R.J. Reginato and P.J. Pinter Jr. 1981. Canopy temperature as a crop water stress indicator. 17: 1133-1138.
Jones, R., S. Quattar and R. Crookston. 1984. Thermal environment during endosperm cell division and grain filling in maize: Effects on kernel growth and development in vitro 1. Crop Science 24: 133-137.
Jong, S.K., J.L. Brewbaker and C.H. Lee. 1982. Effects of solar radiation on the performance of maize in 41 successive monthly plantings in hawaii1. 22: 13-18.
Julius, B.T., K.A. Leach, T.M. Tran, R.A. Mertz and D.M. Braun. 2017. Sugar transporters in plants: new insights and discoveries. Plant Cell Physiology 58: 1442-1460.
Kerr, E. 1961. Note on selecting sweet corn for eating quality in early generations of inbreeding. Canadian Journal of Plant Science 41: 438-439.
Kiniry, J.R. and J.T. Ritchie. 1985. Shade-sensitive interval of kernel number of maize1. 77: 711-715.
Lai, J.c., B. Ming, S.k. Li, K.r. Wang, R.z. Xie and S.j. Gao. 2010. An Image-Based Diagnostic Expert System for Corn Diseases. Agricultural Sciences in China 9: 1221-1229.
LeClere, S., E.A. Schmelz and P.S. Chourey. 2010. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiology 153: 306-318.
Lee, C. 2011. Corn growth stages and growing degree days: a quick reference guide. University of Kentucky College of Agriculture. p. AGR-202.
Liu, Y.-H., C.E. Offler and Y.-L. Ruan. 2013. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Annual review of plant biology 4: 282.
Long, S.P., T. East and N. Baker. 1983. Chilling damage to photosynthesis in young Zea mays: I. Effects of light and temperature variation on photosynthetic CO2 assimilation. Journal of Experimental Botany 34: 177-188.
Thompson, L.M. 1986. Climatic Change, Weather Variability, and Corn Production 1. Agronomy Journal 78: 649-653.
Mclaughlin, J.E. and J. Boyer. 2004. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. J Annals of Botany 94: 675-689.
McMaster, G.S. and W.W. Wilhelm. 1997. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87: 291-300.
Miedema, P. and J. Sinnaeve. 1980. Photosynthesis and respiration of maize seedlings at suboptimal temperatures1. Journal of Experimental Botany 31: 813-819.
Muchow, R.C., T.R. Sinclair and J.M. Bennett. 1990. Temperature and solar radiation effects on potential maize yield across locations. 82: 338-343.
Neild, R.E. and M.W. Seeley. 1977. Growing degree days predictions for corn and sorghum development and some applications to crop production in nebraska.
Nielsen, R.L. 2018. Grain Fill Stages in Corn. Agronomy Dept., Purdue Univ.
Otegui, M.a.E. and R. Bonhomme. 1998. Grain yield components in maize: I. Ear growth and kernel set. Field Crops Research 56: 247-256.
Ren, B., J. Zhang, X. Li, X. Fan, S. Dong, P. Liu, et al. 2014. Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of plant science 94: 23-31.
Rongine De Fekete, M.A. and C.E. Cardini. 1964. Mechanism of glucose transfer from sucrose into the starch granule of sweet corn. Archives of Biochemistry and Biophysics 104: 173-184.
Ruan, Y.-L. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual review of plant biology 65: 33-67.
Russelle, M.P., W.W. Wilhelm, R.A. Olson and J.F. Power. 1984. Growth analysis based on degree days1. 24: 28-32.
Scott, D. 1970. CO2 exchange of plants. New Zealand Journal of Botany 8: 369-379.
Sellers, P.J. 1985. Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6: 1335-1372.
Setter, T.L. and R. Parra. 2010. Relationship of carbohydrate and abscisic acid levels to kernel set in maize under postpollination water deficit. Crop Science 50: 980-988.
Shaw, R.H. and J.E. Newman. 1985. Weather stress in the corn crop. Michigan State University.
Tobias, R.B., C.D. Boyer and J.C. Shannon. 1992. Alterations in carbohydrate intermediates in the endosperm of starch-deficient maize (Zea mays L.) genotypes. Plant Physiol 99: 146-152.
Unger, P.W. 1984. Crop reactions to water and temperature stresses in humid, temperate climates. 138: 255.
Warrington, I.J. and E.T. Kanemasu. 1983a. Corn growth response to temperature and photoperiod II. Leaf-initiation and leaf-appearance rates. Agronomy Journal 75: 755-761.
Warrington, I.J. and E.T. Kanemasu. 1983b. Corn growth response to temperature and photoperiod. III. leaf number. Agronomy journal 75: 762-766.
Williams, M.M. 2008. Sweet corn growth and yield responses to planting dates of the north central united states. 43: 1775.
Wong, A.D., J.A. Juvik, D.C. Breeden and J.M. Swiader. 1994. Shrunken2 sweet corn yield and the chemical components of quality. Journal of the American Society for Horticultural Science 119: 747-755.
Yelapure, S. and R. Kulkarni. 2012. Literature review on expert system in agriculture. International Journal of Computer Science Information Technologies 3: 5086-5089.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top