(44.192.10.166) 您好!臺灣時間:2021/03/06 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林亞平
研究生(外文):Ya-Ping Lin
論文名稱:醋栗番茄全基因體分子標誌之開發與探究控制番茄雄蕊長度之候選基因
論文名稱(外文):Development of Genome-Wide High-Density SNP Markers in Solanum pimpinellifolium and Investigation of Candidate Loci of Stamen Length in Tomato
指導教授:陳凱儀
口試委員:胡凱康董致韡鍾國芳林耀正李承叡
口試日期:2018-03-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:131
中文關鍵詞:番茄雄蕊長度族群基因體學關連性分析
DOI:10.6342/NTU201900689
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自達爾文提出演化論後,異型花的遺傳機制一直是植物學家感興趣的議題之一。古典的研究認為控制自交不親和性與異花型的基因緊密連鎖,稱之為S基因座,這些調控相關性狀且緊密連鎖的基因稱為超級基因。一般認為植物從異交演化成自交的過程中會先失去自交不親和性,而後在超級基因內發生重組,使得異型花變成同型花,以確保自交成功的機率。然而伴隨著分子技術的進步,現今的分子證據卻顯示同型花可能是由半合子造成,而非傳統上認為的罕見重組。在農業上,研究此議題可以了解作物在馴化過程中,受到強烈選拔壓力後對基因體造成的改變。此外,也可控制作物的自交不親和性與花型,如此不僅能有效地生產雜交種子,也能藉由提高授粉率而增加產量。
醋栗番茄為野生番茄的一種,原生於秘魯與厄瓜多沿岸,是栽培番茄的近親。因為醋栗番茄具有許多抗病性狀,且可與栽培種番茄相互雜交,故為重要的番茄種原之一。目前醋栗番茄已提供番茄育種工作上一些抗病基因座,也應用於農藝性狀相關的全基因體關聯性定位中。前人研究發現醋栗番茄可分成異交、自交與中間型三種交配系統,異交的醋栗番茄不僅具有較高的遺傳歧異度,且具有較突出的雌蕊。由於醋栗番茄在交配系統與花的形態上都具有多型性,故很適合利用於自交不親和性與異型花的研究。
現今分子標誌已廣泛地應用於作物育種上,伴隨著次世代定序的成本下降,開發重要種原的全基因體分子標誌已成為基礎的育種工作。本研究針對99個醋栗番茄收集系進行PstI限制酶關聯性定序,定序範圍涵蓋12,790個基因。我們一共得到24,330個單一核苷酸多型性分子標誌,其中16,365個分子標誌座落於7,383個基因上。我們觀察到定序範圍與基因的分佈類似,顯示使用PstI限制酶來篩選基因體片段的策略適合應用於尋找候選基因的研究上。此外,該族群可以分成三個先祖次族群及四個混合基因體的次族群。主成份分析、成對Fst、AMOVA皆支持這樣的分群,顯示這組高密度分子標誌可穩定估計族群結構。接著,我們估計該族群整體的連鎖衰變在18千鹼基對,意味著此族群可以在全基因體關聯性分析得到精密的解析度,甚至可以定位到單一基因。然而要滿足這樣的解析度,至少需要50,000個分子標誌。
在雄蕊長度的全基因體關聯性定位中,我們利用98個醋栗番茄收集系進行混合線性模式分析,定位到三個候選基因座,但這三個基因座皆為高度錯誤發現率。由於全基因體關聯性定位的檢定力及錯誤發現率皆與研究樣本的族群大小有關,我們建議兩種增加樣本的方式,一是在各個次族群中均勻地增加取樣數目,這個方法也可能使罕見對偶基因變成一般對偶基因,故也可能增加分子標誌的數目。另一個方法是在秘魯北部增加取樣數目,因為此處是醋栗番茄的發源地,遺傳歧異度大,也可能增加對偶基因數。
另一方面,前人研究顯示style2.1下游附近有兩個控制雄蕊長度的基因 stamen2.2及stamen2.3,我們利用轉錄體組定序來挑選這兩個候選基因,使用的材料是栽培種番茄品系M82及其滲透系TA3178,TA3178在style2.1附近是野生番茄(潘那利番茄)的染色體片段。我們藉由單一核苷酸多型性的數量差異來界定滲透片段的範圍。接著,依據本研究室之前的結果,我們篩選從標誌cLED19A24到CT9該區間的18個候選基因,比較這些候選基因的表現量及多型性後,發現Solyc02g087960.2、Solyc02g087970.1與Solyc02g088070.2可能是stamen2.2及stamen2.3的候選基因。
Botanists have been fascinated by the genetic mechanism of heterostyly since Darwin’s theory of evolution. It was believed that the genes controlling self-incompatibility and floral morphology were linked tightly, so-called S-locus. According to the classical evolutionary studies, when a plant evolved from outcrossing to selfing, it was necessary to lose self-incompatibility and then adjusted the positions of male and female floral organs through the rare recombination within the S-locus. However, new evidence suggested that homostyly resulted from hemizygote rather than the rare recombination. In agriculture, studying the genetic mechanism of self-incompatibility and heterostyly can understand the changes of crop genomes under the selection forces during domestication processes. Additionally, it can accelerate the production of hybrid seeds or ensure the pollination to increase yield.
Solanum pimpinellifolium is a wild tomato originated from the coastal region of Peru and Ecuador. It serves as an important germplasm in tomato breeding programs because it displays many resistant traits and can freely cross to cultivated tomatoes. Previous studies classified this species as complete or near complete allogamy, complete autogamy and intermediate type based on its mating system. In addition, allogamous accessions displayed higher genetic diversity and more exsertion of stigma than autogamous ones. Because S. pimpinellifolium contains the variations of outcrossing rate and floral morphology within its own species, it could be an ideal material to study the genetic mechanism of self-incompatibility and heterostyly.
Nowadays, molecular markers have been applied to crop breeding extensively. Accompanying by the cost down of next generation sequencing, the development of genome-wide high-density markers for germplasm becomes essential in breeding programs. In this research, we performed the PstI-digested associated DNA sequencing for 99 accessions of S. pimpinellifolium, resulting in 24,330 SNPs. The coverage extended to 12,790 genes, and a total of 7,383 genes were targeted directly by 16,365 SNPs. Besides, the sequencing regions and the annotated genes presented similar distributions through each chromosome. This suggested that PstI-digested associated DNA sequencing was an appropriate strategy to investigate candidate genes. This collection was divided into three subpopulations of single-ancestral genome and four subpopulations of mix-ancestral genome by ADMIXTURE. Principle component analysis, pairwise Fst and AMOVA all supported the subpopulations, implying this set of high-density markers was capable to estimate the subpopulations stably. Moreover, the overall LD decay was within 18 Kb, suggesting a fine resolution in genome-wide association study even to a single-gene level. However, to achieve such fine resolution, at least 50,000 markers were required.
Three candidate loci controlling stamen length were identified via the mixed linear model in genome-wide association study of 98 S. pimpinellifolium accessions, but all three loci presented high false discovery rate. Since the power and false positive rate of genome-wide association study depend on the sample size of a studying population, we suggest two approaches to increase sample size. One is to increasing samples in each subpopulation evenly. This approach can potentially make rare alleles to common alleles by increasing the allele frequency. The other is to sampling more individuals in the northern Peru because the accessions in the northern Peru present more genetic diversity. This approach can also increase both rare alleles and common alleles.
On the other hand, following the previous studies, stamen2.2 and stamen2.3 were located in the downstream interval next to style2.1. We performed a RNA sequencing experiment of M82 and TA3178. TA3178 is an introgression line of M82 and contains a segment of Solanum pennellii near style2.1. We identified this introgression region by comparing the difference of SNPs between these two lines. Afterwards, following the previous work in our team, we screened 18 candidate genes from marker cLED19A24 to CT9 by comparing the fold change and cDNA polymorphism between M82 and TA3178. This result suggested that Solyc02g087960.2, Solyc02g087970.1 and Solyc02g088070.2 should be the candidates of stamen2.2 and stamen2.3.
Contents
謝辭 II
摘要 IV
ABSTRACT VI
LIST OF FIGURES XIII
LIST OF TABLES XIV
LIST OF SUPPLEMENTARY DATA XV
CHAPTER 1 INTRODUCTION 1
1.1 HETEROSTYLY 1
1.1.1 Evolution of heterostyly 1
1.1.2 Heterostyly in tomato species 2
1.2 SOLANUM PIMPINELLIFOLIUM 3
1.2.1 The mating systems and flower characters in S. pimpinellifolium 3
1.2.2 S. pimpinellifolium is a diverse and attractive tomato germplasm 4
1.2.3 The population differentiation of S. pimpinellifolium 4
1.2.4 The genetic diversity of S. pimpinellifolium 5
1.3 GENOME-WIDE ASSOCIATION STUDY 6
1.3.1 The concept of GWAS 6
1.3.2 LD determines the resolution of GWAS 7
1.3.3 Population structure and kinship cause confounding effects in GWAS 8
1.4 NEXT GENERATION SEQUENCING (NGS) TECHNOLOGY 10
1.4.1 Restriction-site associated DNA sequencing 10
1.4.2 RNA sequencing 11
1.5 DEVELOPMENT OF STAMEN 12
1.5.1 MADS box genes determine stamen differentiation 12
1.5.2 Phytohormones regulate the stamen development 12
1.6 CONCLUSION 13
1.7 REFERENCE 14
CHAPTER 2 ASSESSMENT OF POPULATION DIFFERENTIATION AND LINKAGE DISEQUILIBRIUM IN SOLANUM PIMPINELLIFOLIUM USING GENOME-WIDE HIGH-DENSITY SNP MARKERS 25
2.1 PURPOSE 25
2.2 MATERIAL AND METHOD 25
2.2.1 Plant materials 25
2.2.2 RAD sequencing 26
2.2.3 SNP calling 26
2.2.4 Population differentiation 27
2.2.5 Isolation by distance 28
2.2.6 Estimate of genetic variation and LD 28
2.2.7 Analysis of SolCAP array data of S. pimpinellifolium 28
2.3 RESULT 29
2.3.1 Identification of 24,330 SNPs from PstI-digested DNA libraries 29
2.3.2 A similar distribution between genes and SNPs was identified in the vicinity of PstI cutting site throughout the genome 31
2.3.3 Genetic differentiation of S. pimpinellifolium was corresponding to the geographic area 32
2.3.4 Meta-analysis of SolCAP genotyping array resulted in 15 subpopulations 35
2.3.5 Rapid LD decay 36
2.3.6 Heterogeneity of genetic recombination within each chromosome 37
2.4 DISCUSSION 38
2.4.1 Subpopulations clustering from north to south are expected due to the high correlation between genetic distance and geographic distance 38
2.4.2 Discrepancy of genetic clustering in SolCAP meta-analysis 40
2.4.3 More markers are required to cover through the genome of S. pimpinellifolium 41
2.5 REFERENCE 42
2.6 SUPPLEMENTARY DATA 47



CHAPTER 3 GWAS OF THE CANDIDATE GENES CONTROLLING STAMEN LENGTH IN SOLANUM PIMPINELLIFOLIUM 73
3.1 PURPOSE 73
3.2 MATERIAL AND METHOD 73
3.2.1 Plant material and phenotyping 73
3.2.2 GWAS 74
3.2.3 Haplotype block 74
3.3 RESULT 75
3.3.1 SSL2.50ch06_45620556 is significant among all the GLM and MLM analysis 75
3.3.2 The LD patterns of these significant loci 78
3.4 DISCUSSION 78
3.4.1 QTL on chromosome 2, 3 and 7 78
3.4.2 Large sample size is essential for GWAS 79
3.4.3 r2 or D’ as an indicator for LD 81
3.4.4 A gap between the estimation of r2 in different softwares 82
3.4.5 Insufficient coverage makes the build of haplotypes unsuccessful 83
3.4.6 More markers or more individuals 84
3.5 REFERENCE 84
3.6 SUPPLEMENTARY DATA 88
CHAPTER 4 THREE CANDIDATE GENES CONTROLLING STAMEN LENGTH REVEALED VIA THE TRANSCRIPTOME PROFILES OF M82 AND ITS INTROGRESSION LINE TA3178 108
4.1 PURPOSE 108
4.2 MATERIAL AND METHOD 109
4.2.1 RNA sequencing 109
4.2.2 The boundary of introgression segment in TA3178 109
4.2.3 Differential expression analysis 110
4.2.4 The cDNA polymorphisms of the genes from cLED19A24 to CT9 110
4.3 RESULT 111
4.3.1 The summary of RNA-seq 111
4.3.2 The 1.1 Mb introgression segment of S. pennellii 111
4.3.3 Only two DEGs in the introgression segment 112
4.3.4 Three candidate genes of stamen2.2 and stamen2.3 113
4.4 DISCUSSION 116
4.4.1 M82 presented more SNPs than TA3178 due to its deeper sequencing 116
4.4.2 Lacking biological replications may underestimate DEGs 116
4.4.2 Transcription profiles and polymorphisms in the introgression segment 117
4.4.4 Narrow down the candidate genes of stamen2.2 and stamen2.3 118
4.5 REFERENCE 119
4.6 SUPPLEMENTARY DATA 121
Chapter 1
Anderson, A. D., & Weir, B. S. (2007). A maximum-likelihood method for the estimation of pairwise relatedness in structured populations. Genetics. https://doi.org/10.1534/genetics.106.063149
Astle, W., & Balding, D. J. (2010). Population Structure and Cryptic Relatedness in Genetic Association Studies. Statistical Science. https://doi.org/10.1214/09-sts307
Auer, P. L., & Doerge, R. W. (2010). Statistical design and analysis of RNA sequencing data. Genetics. https://doi.org/10.1534/genetics.110.114983
Bauchet, G., Grenier, S., Samson, N., Bonnet, J., Grivet, L., & Causse, M. (2017). Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theoretical and Applied Genetics. https://doi.org/10.1007/s00122-017-2857-9
Bedinger, P. A., Chetelat, R. T., McClure, B., Moyle, L. C., Rose, J. K. C., Stack, S. M., … Royer, S. (2011). Interspecific reproductive barriers in the tomato clade: Opportunities to decipher mechanisms of reproductive isolation. Sexual Plant Reproduction. https://doi.org/10.1007/s00497-010-0155-7
Bernacchi, D., & Tanksley, S. D. (1997). An interspecific backcross of Lycopersicon esculentum X L. hirsutum: Linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics.
Bhakta, M. S., Jones, V. A., & Vallejos, C. E. (2015). Punctuated distribution of recombination hotspots and demarcation of pericentromeric regions in Phaseolus vulgaris L. PLoS ONE. https://doi.org/10.1371/journal.pone.0116822
Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE. https://doi.org/10.1371/journal.pone.0048198
Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. https://doi.org/10.1186/s12864-015-1444-1
Caicedo, A. L. (2008). Geographic diversity cline of R gene homologs in wild populations of Solanum pimpinellifolium (Solanaceae). American Journal of Botany. https://doi.org/10.3732/ajb.95.3.393
Caicedo, A. L., & Schaal, B. A. (2004). Heterogeneous evolutionary processes affect R gene diversity in natural populations of Solanum pimpinellifolium. Proceedings of the National Academy of Sciences of the United States of America, 101, 17444–17449. https://doi.org/10.1073/pnas.0407899101
Cardarelli, M., & Cecchetti, V. (2014). Auxin polar transport in stamen formation and development: how many actors? Frontiers in Plant Science. https://doi.org/10.3389/fpls.2014.00333
Charles Darwin M.A., P.B.S., F.L.S., &c. (1862). On the two forms, or dimorphic conditions in the species of Primula, and on their remarkable sexual relations. The Journal of Linn Soc Lond Bot, 6, 77–69.
Chen, A. L., Liu, C. Y., Chen, C. H., Wang, J. F., Liao, Y. C., Chang, C. H., … Chen, K. Y. (2014). Reassessment of QTLs for late blight resistance in the tomato accession L3708 using a restriction site associated DNA (RAD) linkage map and highly aggressive isolates of Phytophthora infestans. PLoS ONE. https://doi.org/10.1371/journal.pone.0096417
Chen, K. Y., Cong, B., Wing, R., Vrebalov, J., & Tanksley, S. D. (2007). Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science. https://doi.org/10.1126/science.1148428
Chen, K. Y., & Tanksley, S. D. (2004). High-resolution mapping and functional analysis of se2.1: A major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus lycopersicon. Genetics. https://doi.org/10.1534/genetics.103.022558
Cheng, H., Song, S., Xiao, L., Soo, H. M., Cheng, Z., Xie, D., & Peng, J. (2009). Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1000440
Cheng, Y., Dai, X., & Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes and Development. https://doi.org/10.1101/gad.1415106
Crowell, S., Korniliev, P., Falcão, A., Ismail, A., Gregorio, G., Mezey, J., & McCouch, S. (2016). Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nature Communications. https://doi.org/10.1038/ncomms10527
Darwin, C. (1862). On the Two Forms, or Dimorphic Condition, in the Species of Priumla, and on their remarkable Sexual Relations. Journal of the Proceedings of the Linnean Society, Botany, 6, 77–96.
Darwin, C. (1877). The different forms of flowers on plants of the same Species. The Different Forms of Flowers on Plants of the Same Species. https://doi.org/10.1017/CBO9780511731419
Davey, J. W., & Blaxter, M. L. (2010). RADseq: Next-generation population genetics. Briefings in Functional Genomics. https://doi.org/10.1093/bfgp/elq031
de Martino, G. (2006). Functional Analyses of Two Tomato APETALA3 Genes Demonstrate Diversification in Their Roles in Regulating Floral Development. THE PLANT CELL ONLINE. https://doi.org/10.1105/tpc.106.042978
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Flint-Garcia, S. A., Thornsberry, J. M., & Buckler, E. S. (2003). Structure of Linkage Disequilibrium in Plants. Annual Review of Plant Biology. https://doi.org/10.1146/annurev.arplant.54.031902.134907
Fulton, T. M., Beck-Bunn, T., Emmatty, D., Eshed, Y., Lopez, J., Petiard, V., … Tanksley, S. D. (1997). QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theoretical and Applied Genetics. https://doi.org/10.1007/s001220050639
Ganders, F. R. (1979). The biology of heterostyly. New Zealand Journal of Botany. https://doi.org/10.1080/0028825X.1979.10432574
Georgiady, M. S., Whitkus, R. W., & Lord, E. M. (2002). Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics.
Grandillo, S., & Tanksley, S. D. (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theoretical and Applied Genetics. https://doi.org/10.1007/BF00224033
Haughn, G. W., & Somerville, C. R. (1988). Genetic control of morphogenesis in Arabidopsis. Developmental Genetics, 9(2), 73–89. https://doi.org/10.1002/dvg.1020090202
Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1000862
Huang, X., & Han, B. (2014). Natural Variations and Genome-Wide Association Studies in Crop Plants. Annual Review of Plant Biology. https://doi.org/10.1146/annurev-arplant-050213-035715
Huang, X., Zhao, Y., Wei, X., Li, C., Wang, A., Zhao, Q., … Han, B. (2012). Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics. https://doi.org/10.1038/ng.1018
Ingvarsson, P. K., & Street, N. R. (2011). Association genetics of complex traits in plants. New Phytologist. https://doi.org/10.1111/j.1469-8137.2010.03593.x
Ishiguro, S., Kawai-Oda, a, Ueda, J., Nishida, I., & Okada, K. (2001). The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell, 13(10), 2191–2209. https://doi.org/10.1105/tpc.010192
Soto-Cerda, B. J., and S. Cloutier, 2012 Association mapping in plant genomes, in Genetic Diversity in Plants, edited by C. Mahmut. InTech, Rijeka.
Jacquard, A. (1972). Genetic Information Given by a Relative. Society. https://doi.org/10.2307/2528643
Jung, J., Kim, H. J., Lee, J. M., Oh, C. S., Lee, H. J., & Yeam, I. (2015). Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt. Euphytica. https://doi.org/10.1007/s10681-015-1442-z
Keller, B., Thomson, J. D., & Conti, E. (2014). Heterostyly promotes disassortative pollination and reduces sexual interference in Darwin’s primroses: Evidence from experimental studies. Functional Ecology. https://doi.org/10.1111/1365-2435.12274
Kim, S., Plagnol, V., Hu, T. T., Toomajian, C., Clark, R. M., Ossowski, S., … Nordborg, M. (2007). Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genetics. https://doi.org/10.1038/ng2115
Korol, A. B., Ronin, Y. I., Itskovich, A. M., Peng, J., & Nevo, E. (2001). Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics. https://doi.org/10.1534/genetics.107.080101
Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: A review. Plant Methods. https://doi.org/10.1186/1746-4811-9-29
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
Li, J., Cocker, J. M., Wright, J., Webster, M. A., McMullan, M., Dyer, S., … Gilmartin, P. M. (2016). Genetic architecture and evolution of the S locus supergene in Primula vulgaris. Nature Plants. https://doi.org/10.1038/nplants.2016.188
Li, J., Tao, X., Li, L., Mao, L., Luo, Z., Khan, Z. U., & Ying, T. (2016). Comprehensive RNA-seq analysis on the regulation of tomato ripening by exogenous auxin. PLoS ONE. https://doi.org/10.1371/journal.pone.0156453
Liu, Y., Zhou, J., & White, K. P. (2014). RNA-seq differential expression studies: More sequence or more replication? Bioinformatics. https://doi.org/10.1093/bioinformatics/btt688
Mandaokar, A., Thines, B., Shin, B., Markus Lange, B., Choi, G., Koo, Y. J., … Browse, J. (2006). Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant Journal. https://doi.org/10.1111/j.1365-313X.2006.02756.x
Moyle, L. C. (2008). Ecological and evolutionary genomics in the wild tomatoes (Solanum Sect. Lycopersicon). Evolution. https://doi.org/10.1111/j.1558-5646.2008.00487.x
Nagpal, P., Ellis, C. M., Weber, H., Ploense, S. E., Barkawi, L. S., Guilfoyle, T. J., …Reed, J. W. (2005). Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development. https://doi.org/10.1242/dev.01955
Panthee, D. R., Gardner, R. G., Ibrahem, R., & Anderson, C. (2015). Molecular Markers Associated with Ph- 3 Gene Conferring Late Blight Resistance in Tomato. American Journal of Plant Sciences, 6, 2144–2150. https://doi.org/10.4236/ajps.2015.613216
Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigenanalysis. PLoS Genetics. https://doi.org/10.1371/journal.pgen.0020190
Pnueli, L. (1994). Isolation of the Tomato AGAMOUS Gene TAG1 and Analysis of Its Homeotic Role in Transgenic Plants. The Plant Cell Online, 6(2), 163–173. https://doi.org/10.1105/tpc.6.2.163
Price, A., Zaitlen, N., Reich, D., & Patterson, N. (2010). New approaches to population stratification in genome-wide association studies. Nature Reviews Genetics, 11(7), 459–463. https://doi.org/10.1038/nrg2813.New
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics.
Ranc, N., Munos, S., Xu, J., Le Paslier, M. C., Chauveau, A., Bounon, R., … Causse, M. (2012). Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3, 2(8), 853–864. https://doi.org/10.1534/g3.112.002667
Rao, E. S., Kadirvel, P., Symonds, R. C., Geethanjali, S., & Ebert, A. W. (2012). Using SSR markers to map genetic diversity and population structure of Solanum pimpinellifolium for development of a core collection. Plant Genetic Resources: Characterisation and Utilisation. https://doi.org/10.1017/S1479262111000955
Rick, C. M., Fobes, J. F., & Holle, M. (1977). Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution. https://doi.org/10.1007/BF00984147
Rick, C. M., Holle, M., & Thorp, R. W. (1978). Rates of cross-pollination in Lycopersicon pimpinellifolium: Impact of genetic variation in floral characters. Plant Systematics and Evolution. https://doi.org/10.1007/BF00988982
Robles, A., Qureshi, S. E., Stephen, S. J., Wilson, S. R., Burden, C. J., Taylor, J. M., … Taylor, J. M. (2012). Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics, 13(1), 484. https://doi.org/10.1186/1471-2164-13-484
Sauvage, C., Segura, V., Bauchet, G., Stevens, R., Do, P. T., Nikoloski, Z., … Causse, M. (2014). Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. Plant Physiology, 165(3), 1120–1132. https://doi.org/10.1104/pp.114.241521
Shirasawa, K., Hirakawa, H., & Isobe, S. (2016). Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Research. https://doi.org/10.1093/dnares/dsw004
Sim, S. C., van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., … Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE. https://doi.org/10.1371/journal.pone.0045520
Slatkin, M. (2008). Linkage disequilibrium - Understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics. https://doi.org/10.1038/nrg2361
Smaczniak, C., Immink, R. G. H., Angenent, G. C., & Kaufmann, K. (2012). Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development. https://doi.org/10.1242/dev.074674
Song, S., Qi, T., Huang, H., & Xie, D. (2013). Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Molecular Plant. https://doi.org/10.1093/mp/sst054
Spooner, D. M., Peralta, I. E., & Knapp, S. (2005). Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L . section Lycopersicon (Mill.) Wettst.]. Taxon, 54(1), 43–61.
Tabata, R., Ikezaki, M., Fujibe, T., Aida, M., Tian, C. E., Ueno, Y., … Ishiguro, S. (2010). Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant and Cell Physiology. https://doi.org/10.1093/pcp/pcp176
Tan, G., Liu, K., Kang, J., Xu, K., Zhang, Y., Hu, L., … Li, C. (2015). Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2015.00428
Tanksley, S. D., & Loaiza-Figueroa, F. (1985). Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.82.15.5093
Vilhjálmsson, B. J., & Nordborg, M. (2013). The nature of confounding in genome-wide association studies. Nature Reviews Genetics. https://doi.org/10.1038/nrg3382
Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics. https://doi.org/10.1016/j.ajhg.2017.06.005
Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics. https://doi.org/10.1038/nrg2484
Wu, D., Liu, Y., Song, S., Chang, C., Peng, J., Peng, W., … Qi, T. (2011). The Jasmonate-ZIM Domain Proteins Interact with the R2R3-MYB Transcription Factors MYB21 and MYB24 to Affect Jasmonate-Regulated Stamen Development in Arabidopsis. The Plant Cell, 23(3), 1000–1013. https://doi.org/10.1105/tpc.111.083089
Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P. C., Hu, L., … Matsuoka, M. (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics, 48(8), 927–934. https://doi.org/10.1038/ng.3596
Yasui, Y., Hirakawa, H., Ueno, M., Matsui, K., Katsube-Tanaka, T., Yang, S. J., … Mori, M. (2016). Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Research. https://doi.org/10.1093/dnares/dsw012
Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., … Buckler, E. S. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics. https://doi.org/10.1038/ng1702
Zhang, S., Xu, M., Qiu, Z., Wang, K., Du, Y., Gu, L., & Cui, X. (2016). Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum). Scientific Reports. https://doi.org/10.1038/srep23173
Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., … Buckler, E. S. (2010). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics. https://doi.org/10.1038/ng.546
Zhu, B., Yang, Y., Li, R., Fu, D., Wen, L., Luo, Y., & Zhu, H. (2015). RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erv203
Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and Prospects of Association Mapping in Plants. The Plant Genome, 1(1), 5–20. https://doi.org/10.3835/plantgenome2008.02.0089
Zouari, I., Salvioli, A., Chialva, M., Novero, M., Miozzi, L., Tenore, G. C., … Bonfante, P. (2014). From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics. https://doi.org/10.1186/1471-2164-15-221
Zuriaga, E., Blanca, J. M., Cordero, L., Sifres, A., Blas-Cerdán, W. G., Morales, R., & Nuez, F. (2009). Genetic and bioclimatic variation in Solanum pimpinellifolium. Genetic Resources and Crop Evolution. https://doi.org/10.1007/s10722-008-9340-z
Chapter 2
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research. https://doi.org/10.1101/gr.094052.109
Bauchet, G., Grenier, S., Samson, N., Bonnet, J., Grivet, L., & Causse, M. (2017). Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theoretical and Applied Genetics. https://doi.org/10.1007/s00122-017-2857-9
Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE. https://doi.org/10.1371/journal.pone.0048198
Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. https://doi.org/10.1186/s12864-015-1444-1
Brachi, B., Morris, G. P., & Borevitz, J. O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. Genome Biology. https://doi.org/10.1186/gb-2011-12-10-232
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. https://doi.org/10.1093/bioinformatics/btm308
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology. https://doi.org/10.1111/mec.12354
Dobritsa, A. P., & Dobritsa, S. V. (1980). DNA protection with the DNA methylase M · BbvI from Bacillus brevis var. GB against cleavage by the restriction endonucleases PstI and PvuII. Gene. https://doi.org/10.1016/0378-1119(80)90128-6
Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A., & Cresko, W. A. (2011). SNP Discovery and Genotyping for Evoultionary Genetics Using RAD Sequencing. Molecular Methods for Evolutionary Genetics, 772(2), 1–19. https://doi.org/10.1007/978-1-61779-228-1
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics.
Fernandez-Pozo, N., Menda, N., Edwards, J. D., Saha, S., Tecle, I. Y., Strickler, S. R., … Mueller, L. A. (2015). The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Research. https://doi.org/10.1093/nar/gku1195
Fulton, T. M., Chunwongse, J., & Tanksley, S. D. (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Reporter, 13(3), 207–209. https://doi.org/10.1007/BF02670897
Gaunt, T. R., Rodríguez, S., & Day, I. N. M. (2007). Cubic exact solutions for the estimation of pairwise haplotype frequencies: Implications for linkage disequilibrium analyses and a web tool “CubeX.” BMC Bioinformatics. https://doi.org/10.1186/1471-2105-8-428
Goudet, J., & Jombart, T. (2015). hierfstat: Estimation and Tests of Hierarchical F-Statistics.
Hijmans, R. J. (2016). geosphere: Spherical Trigonometry. R package version 1.5-5.
Illumina. (2014). Infinium ® Genotyping Data Analysis. Technical Note, 10p. https://doi.org/10.1111/j.1532-950X.2005.00092.x
Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics. https://doi.org/10.1093/bioinformatics/btn129
Kaur, P., & Gaikwad, K. (2017). From Genomes to GENE-omes: Exome Sequencing Concept and Applications in Crop Improvement. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.02164
Meirmans, P. G. (2012). The trouble with isolation by distance. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2012.05578.x
Pembleton, L. W., Cogan, N. O. I., & Forster, J. W. (2013). StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.12129
Rao, E. S., Kadirvel, P., Symonds, R. C., Geethanjali, S., & Ebert, A. W. (2012). Using SSR markers to map genetic diversity and population structure of Solanum pimpinellifolium for development of a core collection. Plant Genetic Resources: Characterisation and Utilisation. https://doi.org/10.1017/S1479262111000955
Remington, D. L., Thornsberry, J. M., Matsuoka, Y., Wilson, L. M., Whitt, S. R., Doebley, J. F., … Buckler, E. S. (2001). Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.201394398
Rick, C. M., Fobes, J. F., & Holle, M. (1977). Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution. https://doi.org/10.1007/BF00984147
Rogers, J. S. (1972). Measures of similarity and genetic distance. In In Studies in Genetics VII (pp. 145–153). Austin, Texas: University of Texas Publication 7213.
Ruggieri, V., Anzar, I., Paytuvi, A., Calafiore, R., Cigliano, R. A., Sanseverino, W., & Barone, A. (2017). Exploiting the great potential of Sequence Capture data by a new tool, SUPER-CAP. DNA Research : An International Journal for Rapid Publication of Reports on Genes and Genomes. https://doi.org/10.1093/dnares/dsw050
Shirasawa, K., Hirakawa, H., & Isobe, S. (2016). Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Research. https://doi.org/10.1093/dnares/dsw004
Sim, S. C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., van Deynze, A., … Francis, D. M. (2012). Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS ONE. https://doi.org/10.1371/journal.pone.0040563
Sim, S. C., van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., … Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE. https://doi.org/10.1371/journal.pone.0045520
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358–1370.
Wright, S. (1943). Isolation by distance. Genetics, 28, 114–138. https://doi.org/10.5194/isprs-Archives-XLII-5-W1-419-2017
Zuriaga, E., Blanca, J. M., Cordero, L., Sifres, A., Blas-Cerdán, W. G., Morales, R., & Nuez, F. (2009). Genetic and bioclimatic variation in Solanum pimpinellifolium. Genetic Resources and Crop Evolution. https://doi.org/10.1007/s10722-008-9340-z
Chapter 3
Brachi, B., Meyer, C. G., Villoutreix, R., Platt, A., Morton, T. C., Roux, F., & Bergelson, J. (2015). Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1421416112
Brachi, B., Morris, G. P., & Borevitz, J. O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. Genome Biology. https://doi.org/10.1186/gb-2011-12-10-232
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. https://doi.org/10.1093/bioinformatics/btm308
Browning, S. R., & Browning, B. L. (2007). Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering. The American Journal of Human Genetics. https://doi.org/10.1086/521987
Darvasi, A., & Soller, M. (1997). A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genetics. https://doi.org/10.1023/A:1025685324830
Flint-Garcia, S. A., Thornsberry, J. M., & Buckler, E. S. (2003). Structure of Linkage Disequilibrium in Plants. Annual Review of Plant Biology. https://doi.org/10.1146/annurev.arplant.54.031902.134907
Fournier-Level, A., Korte, A., Cooper, M. D., Nordborg, M., Schmitt, J., & Wilczek, A. M. (2011). A map of local adaptation in Arabidopsis thaliana. Science, 334(6052), 86–89. https://doi.org/10.1126/science.1209271
Gaunt, T. R., Rodríguez, S., & Day, I. N. M. (2007). Cubic exact solutions for the estimation of pairwise haplotype frequencies: Implications for linkage disequilibrium analyses and a web tool “CubeX.” BMC Bioinformatics. https://doi.org/10.1186/1471-2105-8-428
Georgiady, M. S., Whitkus, R. W., & Lord, E. M. (2002). Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics.
Grandillo, S., & Tanksley, S. D. (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theoretical and Applied Genetics. https://doi.org/10.1007/BF00224033
Hamblin, M. T., Buckler, E. S., & Jannink, J. L. (2011). Population genetics of genomics-based crop improvement methods. Trends in Genetics. https://doi.org/10.1016/j.tig.2010.12.003
Ingvarsson, P. K., & Street, N. R. (2011). Association genetics of complex traits in plants. New Phytologist. https://doi.org/10.1111/j.1469-8137.2010.03593.x
Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: A review. Plant Methods. https://doi.org/10.1186/1746-4811-9-29
N’Diaye, A., Haile, J. K., Cory, A. T., Clarke, F. R., Clarke, J. M., Knox, R. E., & Pozniak, C. J. (2017). Single marker and haplotype-based association analysis of semolina and pasta colour in elite durum wheat breeding lines using a high-density consensus map. PLoS ONE. https://doi.org/10.1371/journal.pone.0170941
Qian, L., Hickey, L. T., Stahl, A., Werner, C. R., Hayes, B., Snowdon, R. J., & Voss-Fels, K. P. (2017). Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops. Frontiers in Plant Science, 8, 1–11. https://doi.org/10.3389/fpls.2017.01534
Rick, C. M., Fobes, J. F., & Holle, M. (1977). Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution. https://doi.org/10.1007/BF00984147
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods. https://doi.org/10.1038/nmeth.2089
Shin, J. H., Blay, S., Graham, J., & McNeney, B. (2015). LDheatmap : An R Function for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms . Journal of Statistical Software. https://doi.org/10.18637/jss.v016.c03
Slatkin, M. (2008). Linkage disequilibrium - Understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics. https://doi.org/10.1038/nrg2361
Soto-Cerda, B. J., & Cloutier, S. 2012 Association mapping in plant genomes, in Genetic Diversity in Plants, edited by C. Mahmut. InTech, Rijeka.
Soyk, S., Müller, N. A., Park, S. J., Schmalenbach, I., Jiang, K., Hayama, R., … Lippman, Z. B. (2017). Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics. https://doi.org/10.1038/ng.3733
Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1530509100
Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. https://doi.org/10.1101/005165
Visscher, P. M., Hemani, G., Vinkhuyzen, A. A. E., Chen, G. B., Lee, S. H., Wray, N. R., … Yang, J. (2014). Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1004269
Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics. https://doi.org/10.1016/j.ajhg.2017.06.005
Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P. C., Hu, L., … Matsuoka, M. (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics, 48(8), 927–934. https://doi.org/10.1038/ng.3596
Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics. https://doi.org/10.1038/ng.2310
Chapter 4
Anders, S., Huber, W., Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., … Salzberg, S. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(R106). https://doi.org/10.1186/gb-2010-11-10-r106
Chen, K. Y., & Tanksley, S. D. (2004). High-resolution mapping and functional analysis of se2.1: A major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus lycopersicon. Genetics. https://doi.org/10.1534/genetics.103.022558
Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695
Hu, W., & Ma, H. (2006). Characterization of a novel putative zinc finger gene MIF1: Involvement in multiple hormonal regulation of Arabidopsis development. Plant Journal. https://doi.org/10.1111/j.1365-313X.2005.02626.x
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msw054
Liao, Y., Smyth, G. K., & Shi, W. (2013). The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research. https://doi.org/10.1093/nar/gkt214
Livne, S., Lor, V. S., Nir, I., Eliaz, N., Aharoni, A., Olszewski, N. E., … Weiss, D. (2015). Uncovering DELLA-Independent Gibberellin Responses by Characterizing New Tomato procera Mutants. The Plant Cell. https://doi.org/10.1105/tpc.114.132795
Morgan, M., Anders, S., Lawrence, M., Aboyoun, P., Pagès, H., & Gentleman, R. (2009). ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btp450
Oh, E., Zhu, J. Y., Bai, M. Y., Arenhart, R. A. ugusto, Sun, Y., & Wang, Z. Y. (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. ELife, 3, 1–19. https://doi.org/10.7554/eLife.03031
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btp616
Zhang, X., Yan, F., Tang, Y., Yuan, Y., Deng, W., & Li, Z. (2015). Auxin Response Gene SlARF3 Plays Multiple Roles in Tomato Development and is Involved in the Formation of Epidermal Cells and Trichomes. Plant and Cell Physiology. https://doi.org/10.1093/pcp/pcv136
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔