(3.238.7.202) 您好!臺灣時間:2021/02/25 11:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林閔翔
研究生(外文):Min-Xiang Lin
論文名稱:操作於近紅外光之垂直式和平面式鍺錫光二極體研究和比較
論文名稱(外文):Investigation and comparison on vertical and planar GeSn photodiode operated in near-infrared
指導教授:鄭鴻祥鄭鴻祥引用關係
指導教授(外文):Hung-Hsiang Cheng
口試委員:余英松洪冠明賈至達
口試委員(外文):Ing-Song YuKuan-Ming HungChih-Ta Chia
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:62
中文關鍵詞:分子束磊晶鍺錫光二極體光檢測器平面式結構
DOI:10.6342/NTU201903986
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於鍺錫材料可藉由調變錫濃度以調變能隙,以延長偵測波段;並且和矽同為四族元素,其易整合於矽基板的特性,使得近幾十年被廣泛研究,並應用於紅外波段的光通訊。然而,也由於鍺錫材料擁有較窄能隙的緣故,使得以鍺或鍺錫材料作為主動區地光電二極體被普遍認為有非常高的暗電流,也因此光感測度始終及不上其他三五族作為主動區的近紅外波段光檢測器。
本論文的實驗中,我們製作了三種不同的元件,兩種垂直結構及一種平面式結構的光二極體。垂直結構的光二極體包含了不同厚度的高品質鍺錫材料作為主動層。並對他們進行暗電流、光響應和光檢測度(detectivity)的量測。兩種垂直結構的二極體,其鍺錫材料的厚度為315nm和162nm,並在1550nm的波長和逆向偏壓0.2V的情況下,以正向入射光入射兩種二極體,分別量測到光響應度為0.4A/W和0.01A/W,以及光檢測度分別為9.1×108cm-Hz1/2W-1和1.0×1010cm-Hz1/2W-1。
在暗電流的方面,由實驗結果可以得知,在垂直結構中主要造成暗電流的原因為表面漏電流,而暗電流的居高不下正是造成較低的光檢測度的主要原因,於是我們成功製作了平面式的光二極體試圖降低暗電流。同樣以正向入射的雷射光照射平面式光二極體,我們成功得到了0至-1V之間的較低暗電流,並在1550nm的波長,我們將該平面式光檢測器操作在逆向偏壓0.2V,得到了光響應度為0.04A/W,以及最高的光檢測度,為5.2×1010cm-Hz1/2W-1。
In recent decades, the GeSn material has been investigated and implied to near-infrared photo-communication due to the following two reasons. Firstly, the band gap of such material can be modulated to extend the detection wavelength by incorporating different composition of Sn. Secondly, Ge has good compatibility with Si CMOS processing. However, the narrower band gap of GeSn causes a higher dark current, which results in a lower detectivity than III-V compound photodiode.
In this thesis, we have fabricated three different devices, two of them (N994 and N965) are fabricated into vertical structures and the other one (N990) is fabricated into planar structure. The vertical p-i-n photodiodes with 315nm and 162nm GeSn layer acting as intrinsic regions have been demonstrated. Dark current and photo response were measured, specific detectivity (D*) was then derived by the measured data. Responsivities were measured to be 0.4A/W and 0.01A/W for N994 and N965 at 1550nm, respectively. Detectivities were derived to be 9.1×108cm-Hz1/2W-1 and 1.0×1010cm-Hz1/2W-1 for N994 and N965, respectively.
By measuring dark current density of the vertical photodiodes with different mesa diameters, we find that the main contribution of dark current in a vertical device is surface leakage current, and such high dark current caused a low detectivity. Therefore, we have fabricated the p-i-n photodiode into a planar structure to avoid this phenomenon. The planar photodiode was also measured with a normal incident laser on it. The dark current at the bias voltage between 0 and -1V was reduced. The responsivity was measured to 0.04A/W and the detectivity was measured to 5.2×1010cm-Hz1/2W-1 at 1550nm at a reverse bias voltage of 0.2V.
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Choice of material 2
1.3 Band gap engineering of Ge 3
1.3.1 Tensile strained Ge 3
1.3.2 GeSn alloy 4
1.4 Introduction of GeSn photodetectors 5
Chapter 2 Fabrication equipment and measurement 8
2.1 Fabrication equipment 8
2.1.1 Molecular beam epitaxy (MBE) 8
2.1.2 Mask aligner 9
2.1.3 Reactive-ion etching (RIE) 10
2.1.4 Ion implanter 11
2.1.5 Plasma-enhanced chemical vapor deposition (PECVD) 11
2.1.6 Rapid thermal annealing (RTA) 13
2.1.7 E-beam metal evaporator 14
2.2 Measure setup 15
2.2.1 X-ray diffractometer (XRD) 15
2.2.2 Semiconductor device parameter analyzer 16
2.2.3 Atomic force microscope (AFM) 17
Chapter 3 Fabrication of vertical p-i-n GeSn photodiode 18
3.1 Introduction 18
3.2 Fabrication of N994 18
3.2.1 Sample structure and characteristics 18
3.2.2 Device processing 23
3.3 Fabrication of N965 31
3.3.1 Sample structure and characteristics 31
3.3.2 Device processing of N965 33
3.4 Summary of Chapter 3 34
Chapter 4 Fabrication of planar p-i-n GeSn photodiode 35
4.1 Introduction 35
4.2 Fabrication of N990 35
4.2.1 Sample structure and characteristics 36
4.2.2 Device processing 37
4.3 Summary of Chapter 4 43
Chapter 5 Measurement of p-i-n GeSn photodiode 44
5.1 Introduction 44
5.2 Dark current 44
5.2.1 Vertical p-i-n GeSn photodetector 44
5.2.2 Planar p-i-n GeSn photodetector 47
5.3 Optical measurement 49
5.3.1 Vertical p-i-n GeSn photodiode 49
5.3.2 Planar p-i-n GeSn photodetector 52
5.4 Detectivity 55
Chapter 6 Summary and future work 57
6.1 Summary 57
6.2 Future work 58
REFERENCE 59
[1]Oehme, M., et al. "High bandwidth Ge p-i-n photodetector integrated on Si." Applied physics letters 89.7 (2006): 071117.
[2]Rode, D. L. "Electron mobility in Ge, Si, and GAP." physica status solidi (b) 53.1 (1972): 245-254.
[3]Colace, Lorenzo, et al. "Ge on Si p-i-n photodiodes operating at 10 Gbit/s." Applied physics letters 88.10 (2006): 101111.
[4]Nakatsuka, Osamu, et al. "Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates." Japanese Journal of Applied Physics 49.4S (2010): 04DA10.
[5]Borisenko, Victor E., and Stefano Ossicini. What is what in the Nanoworld: A Handbook on Nanoscience and Nanotechnology. John Wiley & Sons, 2013.
[6]Li, H., et al. "Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment." Applied Physics Letters 102.25 (2013): 251907.
[7]Gurdal, O., et al. "Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge 1− x Sn x (x≲ 0.26) alloys on Ge (001) 2× 1." Journal of applied physics 83.1 (1998): 162-170.
[8]Takeuchi, Shotaro, et al. "Growth and structure evaluation of strain-relaxed Ge1− xSnx buffer layers grown on various types of substrates." Semiconductor science and technology 22.1 (2006): S231.
[9]Mathews, Jay, et al. "Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications." Applied physics letters 95.13 (2009): 133506.
[10]Liu, Jifeng, et al. "Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications." Applied Physics Letters 87.1 (2005): 011110.
[11]Sun, Xiaochen, et al. "Optical bleaching of thin film Ge on Si." ECS Transactions 16.10 (2008): 881-889.
[12]Takeuchi, Shotaro, et al. "Growth of highly strain-relaxed Ge 1− x Sn x/virtual Ge by a Sn precipitation controlled compositionally step-graded method." Applied physics letters 92.23 (2008): 231916.
[13]Michel, Jurgen, Jifeng Liu, and Lionel C. Kimerling. "High-performance Ge-on-Si photodetectors." Nature photonics 4.8 (2010): 527.
[14]Alberi, K., et al. "Band anticrossing in highly mismatched Sn x Ge 1− x semiconducting alloys." Physical Review B 77.7 (2008): 073202.
[15]Oehme, Michael, et al. "GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz." Optics express 22.1 (2014): 839-846.
[16]Werner, J., et al. "Germanium-tin pin photodetectors integrated on silicon grown by molecular beam epitaxy." Applied physics letters 98.6 (2011): 061108.
[17]Jutzi, M., et al. "Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth." IEEE Photonics Technology Letters 17.7 (2005): 1510-1512.
[18]Pham, Thach, et al. "Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection." Optics express 24.5 (2016): 4519-4531.
[19]Cho, A., and M. Panish. "Molecular beam epitaxy method for fabricating magnesium doped thin films of group iii (a)-v (a) compounds." U.S. Patent No. 3,839,084. 1 Oct. 1974.
[20]“儀器設備介紹.” 光電製程與量測實驗室, 140.112.17.158/. 10 Jul. 2019.
[21]William, Shockley. "Forming semiconductive devices by ionic bombardment." U.S. Patent No. 2,787,564. 2 Apr. 1957.
[22]Su, Shaojian, et al. "GeSn pin photodetector for all telecommunication bands detection." Optics express 19.7 (2011): 6400-6405.
[23]Vincent, Benjamin, et al. "Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors." Microelectronic Engineering 88.4 (2011): 342-346.
[24]Liu, Yan, et al. "Reduction of formation temperature of nickel mono-stanogermanide [Ni (GeSn)] by the incorporation of tin." ECS Solid State Letters 3.2 (2014): P11-P13.
[25]Madelung, O. "Semiconductors: Intrinsic Properties of Group IV Elements and III− V, II− VI, and I− VII Compounds, Vol. 22a." (1985).
[26]Tseng, H. H., et al. "Mid-infrared electroluminescence from a Ge/Ge0. 922Sn0. 078/Ge double heterostructure pin diode on a Si substrate." Applied physics letters 102.18 (2013): 182106.
[27]Yin, Wan-Jian, Xin-Gao Gong, and Su-Huai Wei. "Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the Sn x Ge 1− x alloys." Physical Review B 78.16 (2008): 161203.
[28]Pérez Ladrón de Guevara, H., et al. "Nonlinear behavior of the energy gap in Ge 1− x Sn x alloys at 4 K." Applied Physics Letters 91.16 (2007): 161909.
[29]Masini, C., et al. "High-performance pin Ge on Si photodetectors for the near infrared: from model to demonstration." IEEE Transactions on Electron Devices 48.6 (2001): 1092-1096.
[30]Oehme, M., et al. "GeSn pin detectors integrated on Si with up to 4% Sn." Applied Physics Letters 101.14 (2012): 141110.
[31]Johnson, John Bertrand. "Thermal agitation of electricity in conductors." Physical review 32.1 (1928): 97.
[32]Conley, Benjamin R., et al. "Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection." Optics express 22.13 (2014): 15639-15652.
[33]Rogalski, Antonio. Infrared detectors. CRC press, 2010.
[34]Pham, T. N., et al. "Si-based Ge0. 9Sn0. 1 photodetector with peak responsivity of 2.85 A/W and longwave cutoff at 2.4 μm." Electronics letters 51.11 (2015): 854-856.
[35]Hao-Cheng Lin. "GeSn-based photodiode with high performance operated from 1350 to 1700 nm." Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University (2018): 1-58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔