(3.235.11.178) 您好!臺灣時間:2021/02/26 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂岱融
研究生(外文):Dai-Rong Lu
論文名稱:無偏振選擇的超寬頻帶消色差超穎透鏡
論文名稱(外文):An ultra-broadband achromatic metalens without polarization selection
指導教授:管傑雄管傑雄引用關係蘇文生蘇文生引用關係
指導教授(外文):Chieh-Hsiung KuanVin-Cent Su
口試委員:蘇炎坤孫允武孫建文楊健生
口試委員(外文):Yan-Kuin SuYuen-Wuu SuenKien-Wen Sun
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:54
中文關鍵詞:超穎透鏡消色差氮化鎵
DOI:10.6342/NTU201903314
相關次數:
  • 被引用被引用:0
  • 點閱點閱:55
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
寬頻超穎透鏡有別於傳統相機鏡頭,能在小尺寸下達到消色差的效果,這使得許多光學元件在體積及重量上能大大縮小。因此近幾年來各個研究團隊不斷致力於研發寬頻超穎透鏡,但目前主流的設計方法並無法達成無偏振選擇特性,且透鏡效率值較低,操作頻寬過窄,使得其在實際應用上遇到了瓶頸。
本篇論文將探討超穎透鏡的發展,並在設計、模擬、製程、量測上做詳細的介紹。我們選用六角環柱之氮化鎵材料進行單元結構設計,最終完成在各種線偏振角度入射下均能聚焦的無偏振選擇超穎透鏡,且其在波長633奈米處效率高達90%,操作頻寬由整個可見光區至近紅外光,並且能在量測上達到白光聚焦的效果。在文末也提及使用多週期合併之設計方法,預期能擴大設計區域並獲取更大的數值孔徑。總體而言,超穎透鏡極具發展潛力,預期在未來將會取代許多傳統光學透鏡。
Broadband meta-lenses are different from traditional camera lenses.They can achieve achromatic effects in tiny units and make many optical components much smaller in size and weight. Therefore, in recent years, various research teams have been working hard to develop broadband meta-lenses. However, current design methods can not achieve non-polarization selective characteristics, the efficiency of the meta-lenses is low, and the operation bandwidth is too narrow. These problems make it encounter bottlenecks in practical applications.
This paper explores the development of meta-lenses and provides a detailed introduction to design, simulation, process, and measurement. We chose gallium nitride material and hexagonal ring-column for cell structure design and finally completed the non-polarization-selective meta-lens that could focus at various angles of linear polarization. Its efficiency was about 90% at a wavelength of 633 nm. The operating bandwidth was from the entire visible region to the near-infrared light. The white light focusing could also be achieved on the measurement. At the end of the paper, We propose the design method of multi-cycle meta-lens and expect to expand the design area and obtain a larger numerical aperture. In general, meta-lenses have great potential to replace many traditional optical lenses in the future.
口試委員審定書 I
致謝 II
中文摘要 III
Abstract IV
目錄 V
第一章 超穎透鏡的原理及發展 1
1-1 廣義司乃耳定理(Generlized Snell’s law) 1
1-2 繞射極限(Diffraction limit) 2
1-3 電磁波的極化 4
1-4 極化狀態的表示與量測 5
1-5 像差與色散 7
1-6 寬頻超穎透鏡發展 8
第二章 儀器介紹 11
2-1 電漿輔助化學氣相沉積(Plasma-Enhanced Chemical Vapor Deposition,PEVCD) 11
2-2 旋轉塗佈機 (Spin Coater) 12
2-3 電子束微影系統(E-Beam Lithography) 12
2-4 電子束蒸鍍 (E-Gun Evaporation) 15
2-5 反應離子蝕刻(Reactive-Ion Etching) 16
2-6 感應式耦合電漿蝕刻(ICP-RIE) 17
2-7 掃描式電子顯微鏡(Scanning Electron Microscope) 18
第三章 元件設計 19
3-1 無偏振選擇寬頻消色差超穎透鏡 19
3-2 透鏡設計參數 19
3-3 超穎透鏡的相位分佈 21
3-4 單元結構的CST模擬 24
3-5 線性回歸 26
3-6 透鏡設計參數 28
3-7 CST模擬聚焦情況 28
第四章 樣品製程 31
4-1 初始樣品準備 31
4-2 樣品表面清潔 31
4-3 PECVD沉積二氧化矽硬遮罩薄膜 32
4-4 電子束光阻塗佈 32
4-5 電子束微影製程 33
4-6 顯影製程 34
4-7 鉻金屬層電子槍蒸鍍 35
4-8 光阻掀離製程 35
4-9 反應離子蝕刻二氧化矽 36
4-10 去除鉻金屬層 37
4-11 ICPRIE蝕刻單晶矽 37
4-12 去除二氧化矽薄膜 38
第五章 量測與分析 39
5-1 量測儀器簡介 39
5-2 光路架構 40
5-3 量測方法 41
5-4 分析程式 42
5-5 量測結果 43
5-6 結果比較 46
5-7 無偏振選擇的超寬頻帶超穎透鏡 47
結論及未來展望 51
參考文獻 52
[1]Jason Valentine, Shuang Zhang, Thomas Zentgraf, Erick UlinAvila, Dentcho A. Genov, Guy Bartal & Xiang Zhang, “Three-dimensional optical metamaterial with a negative refractive index”, Nature 0724 18 Sep. 2008
[2] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, “light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction “Science 2011, 334, 333.
[3] R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces “Phys. Rev. B 2012, 85, 155457.
[4] Nanfang Yu, Francesco Aieta, Patrice Genevet, Mikhail A. Kats, Zeno Gaburro, and Federico Capasso, “A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces”, Nano Lett. 2012, 12, 6328−6333
[5] C. Pfeiffer, A. Grbic, “Metamaterial Huygens’ Surfaces: Tailoring Wave Fronts with Reflectionless Sheets”Phys. Rev. Lett. 2013, 110, 197401
[6] F. Monticone, N. M. Estakhri, A. Alù, “Full control of nanoscale optical transmission with a composite metascreen”Phys. Rev. Lett. 2013, 110, 203903.
[7] Yuanmu Yang, Wenyi Wang, Parikshit Moitra, Ivan I. Kravchenko, Dayrl P. Briggs, and Jason Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation”, Nano Lett.2014, 14, 1394−1399
[8] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar,”High-Efficiency Dielectric Huygens’ Surfaces “Adv. Opt. Mater. 2015, 3, 813.
[9] S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, A. Faraon,” Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces” Nat. Commun. 2016, 7, 11618.
[10] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission”Nat. Nanotechnol. 2015, 10, 937.
[11] Bo Han Chen,Pin Chieh Wu,Vin-Cent Su,Yi-Chieh Lai,Cheng Hung Chu, I Chen Lee, Jia-Wern Chen,Yu Han Chen,Yung-Chiang Lan, Chieh-Hsiung Kuan,and Din Ping Tsai”GaN Metalens for Pixel-Level Full-Color Routing at Visible Light Nano Lett”. 2017, 17, 6345−6352
[12] Shuming Wang , Pin Chieh Wu,, Vin-Cent Su, Yi-Chieh Lai, Cheng Hung Chu, Jia-Wern Chen, Shen-Hung Lu, Ji Chen, Beibei Xu, Chieh-Hsiung Kuan, Tao Li,, Shining Zhu & Din Ping Tsai “Broadband achromatic optical metasurface devices” Nature Communications volume 8, Article number: 187 (2017)
[13]Shuming Wang, Pin Chieh Wu, Vin-Cent Su, Yi-Chieh Lai, Mu-Ku Chen, Hsin Yu Kuo, Bo Han Chen, Yu Han Chen, Tzu-Ting Huang , Jung-Hsi Wang , Ray-Ming Lin, Chieh-Hsiung Kuan , Tao Li1,, Zhenlin Wang, Shining Zhu and Din Ping Tsai “A broadband achromatic metalens in the visible” Nature Nanotechnologyvolume 13, pages227–232 (2018)
[14] Henri Jansen, Meint de Boer, Johannes Burger, Rob Legtenberg, and Miko Elwenspoek “THE BLACK SILICON METHOD H: THE EFFECT OF MASK MATERIAL AND LOADING ON THE REACTIVE ION ETCHING OF DEEP SILICON TRENCHES”Microelectronic Engineering Volume 27, Issues 1–4, February 1995, Pages 475-480
[15] A Smyrnakis , E Almpanis, V Constantoudis , N Papanikolaou and E Gogolides Optical properties of high aspect ratio plasma etched silicon nanowires: fabrication-induced variability dramatically reduces reflectance Nanotechnology, Volume 26, Number 8
[16] Zhiqin Li , Yiqin Chen , Xupeng Zhu , Mengjie Zheng , Fengliang Dong , Peipei Chen , Lihua Xu , Weiguo Chu and Huigao Duan Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching 2016 Nanotechnology 27 365302
[17] J Nanosci Nanotechnol” Realization of Vertical Silicon Nanowire Networks with an Ultra High Density Using a Top–Down Approach” 2010 Nov;10(11):7423-7
[18] Luminescence properties and warm white LED application of a ternary-alkaline fluoride red phosphor K2NaAlF6:Mn4+ 2017 Aug 14;46(30):9925-9933
[19] Dennis H. Goldstein (2010) , Polarized Light (3rd ed.), CRC Press
[20] Wei Ting Chen, Alexander Y. Zhu, Jared Sisler, Zameer Bharwani & Federico Capasso “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures” Nature Communications 10, Article number: 355(2019)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔