|
1.1Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, Steven Swanson, “Basic Performance Measurements of the Intel Optane DC Persistent Memory Module,” arXiv, 2 Apr. 2019. 1.2P. J. Nair et. al., “architectural framework for assisting DRAM scaling by tolerating high error rates,” ACM SIGARCH Computer Architecture News , p. Volume 41 Issue 3, 3 Jun. 2013. 1.3J. M. Park et al., "20nm DRAM: A new beginning of another revolution," 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp. 26.5.1-26.5.4. 1.4S. Ikeda et al., "Magnetic Tunnel Junctions for Spintronic Memories and Beyond," in IEEE Transactions on Electron Devices, vol. 54, no. 5, pp. 991-1002, May 2007. 1.5Dongsoo Woo., “DRAM: Its Challenging History and Future”, IEEE International Electron Device Meeting, short course, 2018. 1.6S. Yu and P. Chen, "Emerging Memory Technologies: Recent Trends and Prospects," in IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 43-56, Spring 2016. 1.7W. Jeon, O. Salicio, A. Chaker, P. Gonon and C. Vallée, "Controlling the Current Conduction Asymmetry of HfO2 Metal–Insulator–Metal Diodes by Interposing Al2O3 Layer," in IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 402-406, Jan. 2019. 1.8G. Hu et al., "Key parameters affecting STT-MRAM switching efficiency and improved device performance of 400°C-compatible p-MTJs," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 38.3.1-38.3.4. 1.9R. Dorrance, F. Ren, Y. Toriyama, A. A. Hafez, C. K. Yang and D. Markovic, "Scalability and Design-Space Analysis of a 1T-1MTJ Memory Cell for STT-RAMs," IEEE Transactions on Electron Devices, vol. 59, no. 4, pp. 878-887, Apr., 2012. 2.1Dongsoo Woo., “DRAM: Its Challenging History and Future”, IEEE International electron Device Meeting, short course, 2018. 2.2Milan Pešić et al “Low leakage ZrO2 based capacitors for sub 20 nm dynamic random access memory technology nodes”, Journal of Applied Physics 119, 064101, Feb, 2016. 2.3Ming-Yen Li , Bin-Siang Tsai, Pei-Chuen Jiang, Hsiao-Che Wu, Yung-Hsien Wu, Yu-Jen Lin, “Structure and property changes of ZrO2/Al2O3/ZrO2 laminate induced by low temperature NH3 annealing applicable to metal-insulator-metal capacitor”, Thin Solid Films, Vol. 518, issue 18, 1, Jul. 2010. 2.4Y. Hwamg et al., “An Overview and Future Challenges of High Density DRAM for 20nm and Beyond” 2.5Kinam Kim, "Technology for sub-50nm DRAM and NAND flash manufacturing," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest. pp. 323-326 Washington, DC, 2005. 2.6J. Lee et al., "New Method for Reduction of the Capacitor Leakage Failure Rate Without Changing the Capacitor Structure or Materials in DRAM Mass Production," in IEEE Transactions on Electron Devices, vol. 65, no. 11, pp. 4839-4845, Nov., 2018. 2.7W. Jeon, Y. Kim, C. H. An, C. S. Hwang, P. Gonon and C. Vallée, "Demonstrating the Ultrathin Metal–Insulator– Metal Diode Using TiN/ZrO2–Al2O¬¬3–ZrO2 Stack by Employing RuO2 Top Electrode," in IEEE Transactions on Electron Devices, vol. 65, no. 2, pp. 660-666, Feb., 2018 2.8W. Jeon, O. Salicio, A. Chaker, P. Gonon and C. Vallée, "Controlling the Current Conduction Asymmetry of HfO2 Metal–Insulator–Metal Diodes by Interposing Al2O3 Layer," in IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 402-406, Jan. 2019. 2.9S. Knebel, U. Schroeder, D. Zhou, T. Mikolajick and G. Krautheim, "Conduction Mechanisms and Breakdown Characteristics of Al2O3-Doped ZrO2 High-k Dielectrics for Three-Dimensional Stacked Metal–Insulator–Metal Capacitors," in IEEE Transactions on Device and Materials Reliability, vol. 14, no. 1, pp. 154-160, Mar. 2014. 2.10P. Gonon, and C. Vallee, “Modeling of nonlinearities in the capacitance-voltage characteristics of high-k metal-insulator-metal capacitors”, Appl. Phys. Lett. 90, 142906, Apr, 2007. 2.11Wenke Weinreich, Ahmed Shariq, Konrad Seidel, and Jonas Sundqvist, “Detailed leakage current analysis of metal–insulator–metal capacitors with ZrO2, ZrO2/ SiO2/ZrO2, and ZrO2/Al2O3/ZrO2 as dielectric and TiN electrodes”, Journal of Vacuum Science & Technology B 31, 01A109, Dec, 2012. 2.12J. W. McPherson, Jinyoung Kim, A. Shanware, H. Mogul and J. Rodriguez, "Trends in the ultimate breakdown strength of high dielectric-constant materials," in IEEE Transactions on Electron Devices, vol. 50, no. 8, pp. 1771-1778, Aug. 2003. 2.13Joo-Hyung Kim, Velislava Ignatova, Peter Kücher, Johannes Heitmann, Lars Oberbeck, Uwe Schröder, ” Physical and electrical characterization of high-k ZrO2 metal–insulator–metal capacitor ”, Thin Solid Films, Vol. 516, Issue 23, 1, Oct., 2008. 2.14Christopher L. Henderson, “Semiconductor Reliability and Product Qualification”, IRPS, IEEE International Reliability Physics Symposium (IRPS), short course, Mar., 2018. 3.1O. Fursenko, J. Bauer, G. Lupina, P. Dudek, M. Lukosius, Ch. Wenger, P. Zaumseil, “Optical properties and band gap characterization of high dielectric constant oxides”, Thin Solid Films Volume 520, Issue 14, Pages 4532-4535, 1, May, 2012. 3.2Milan Pesic, Steve Knebel , Kyuho Cho , Changhwa Jung, Jaewan Chang, Hanjin Lim, Nadiia Kolomiiets, Valeri V.Afanas’ev, Thomas Mikolajick, UweSchroeder, “Conduction barrier offset engineering for DRAM capacitor scaling”, Solid-State Electronics, Volume 115, Part B, Pages 133-139, Jan., 2016. 3.3Wenke Weinreich, Ahmed Shariq, Konrad Seidel, and Jonas Sundqvist, “Detailed leakage current analysis of metal–insulator–metal capacitors with ZrO2, ZrO2/SiO2/ZrO2, and ZrO2/Al2O3/ZrO2 as dielectric and TiN electrodes”, Journal of Vacuum Science & Technology B 31, 01A109, Feb., 2013. 3.4Sang Yeon Lee, Jaewan Chang, Jaehyung Choi, Younsoo Kim, HanJin Lim, Hyeongtag Jeon, Hyungtak Seo, “Investigation of ultrathin Pt/ZrO2-Al2O3- ZrO2/TiN DRAM capacitors Schottky barrier height by internal photoemission spectroscopy”, Current Applied Physics, 17, 267-271, Dec., 2017. 3.5Balazs Kralik, Eric K. Chang, and Steven G. Louie, “Structural properties and quasiparticle band structure of zirconia”, PHYSICAL REVIEW B VOLUME 57, NUMBER 12, Mar., 1998. 3.6Woojin Jeon,z Hoi-Sung Chung, Daekwon Joo, and Sang-Won Kang, “TiO2/Al2O3/TiO¬2¬ Nanolaminated Thin Films for DRAM Capacitor Deposited by Plasma-Enhanced Atomic Layer Deposition” Electrochemical and Solid-State Letters, H19-H21, Nov.,2007. 3.7Shi-Jin Ding, Jun Xu, Yue Huang, Qing-Qing Sun, David Wei Zhang, and Ming-Fu Li, “Electrical characteristics and conduction mechanisms of metal-insulator-metal capacitors with nanolaminated dielectrics” Appl. Phys. Lett. 93, 092909, Jul., 2008. 3.8W. Jeon, O. Salicio, A. Chaker, P. Gonon and C. Vallée, "Controlling the Current Conduction Asymmetry of HfO2 Metal–Insulator–Metal Diodes by Interposing Al2O3 Layer," IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 402-406, Jan. 2019. 4.1G. Hu et al., "Key parameters affecting STT-MRAM switching efficiency and improved device performance of 400°C-compatible p-MTJs," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 38.3.1-38.3.4. 4.2J. Kim, A. Chen, B. Behin-Aein, S. Kumar, J. Wang and C. H. Kim, "A technology-agnostic MTJ SPICE model with user-defined dimensions for STT-MRAM scalability studies," 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2015, pp. 1-4. 4.3A V Khvalkovskiy, D Apalkov, S Watts, R Chepulskii, R S Beach, A Ong, X Tang, A Driskill-Smith, W H Butler, P B Visscher, “Basic principles of STT-MRAM cell operation in memory arrays”, Journal of Physics D: Applied Physic, 31, Jan., 2013. 4.4M. Sato, and Y. lshii, “Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder”, Journal of Applied Physics 66, 983, 31, Mar., 1989. 4.5Bernard Dieny, Ronald B. Goldfarb, Kyung-Jin Lee, “Introduction to Magnetic Random-Access Memory”, First Edition, 2017. 4.6C. J. Lin et al., "45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ cell," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, 2009, pp. 1-4. 4.7K. Lee and S. H. Kang, "Design Consideration of Magnetic Tunnel Junctions for Reliable High-Temperature Operation of STT-MRAM," in IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1537-1540, Jun., 2010. 4.8M. Madec, J. Kammerer and L. Hébrard, "Compact Modeling of a Magnetic Tunnel Junction—Part II: Tunneling Current Model," in IEEE Transactions on Electron Devices, vol. 57, no. 6, pp. 1416-1424, Jun., 2010 4.9M. Julliere, “Tunneling between ferromagnetic films”, Physics Letters A, Volume 54, Issue 3, Pages 225-22, 8, Sep., 1975. 4.10J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B 39, 6995, 1, Apr, 1989. 4.11W. F. Brinkman, R. C. Dynes, and J. M. Rowell, “Tunneling Conductance of Asymmetrical Barriers”, Journal of Applied Physics, 41, 1970. 4.12C. J. Lin et al., "45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ cell," IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, pp. 1-4., 2009. 4.13K. Lee and S. H. Kang, "Design Consideration of Magnetic Tunnel Junctions for Reliable High-Temperature Operation of STT-MRAM," in IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1537-1540, Jun. 2010. 4.14V. Drewello, J. Schmalhorst, A. Thomas, and G. Reiss, “Evidence for strong magnon contribution to the TMR temperature dependence in MgO based tunnel junctions”, Phys. Rev. B 77, 014440, 31, Jan, 2008. 4.15K. Ikegami et al., "Low power and high density STT-MRAM for embedded cache memory using advanced perpendicular MTJ integrations and asymmetric compensation techniques," IEEE International Electron Devices Meeting, pp. 28.1.1-28.1.4., San Francisco, CA, 2014. 4.16C. Park et al., "Temperature Dependence of Critical Device Parameters in 1 Gb Perpendicular Magnetic Tunnel Junction Arrays for STT-MRAM," IEEE Transactions on Magnetics, vol. 53, no. 2, pp. 1-4, Feb., 2017. 4.17W. H. Butler et al., "Switching Distributions for Perpendicular Spin-Torque Devices Within the Macrospin Approximation," in IEEE Transactions on Magnetics, vol. 48, no. 12, pp. 4684-4700, Dec. 2012. 4.18Jung-Hwan Moon, Tae Young Lee & Chun-Yeol You, “Relation between switching time distribution and damping constant in magnetic nanostructure”, Scientific reports, 16, Aug., 2018. 4.19R. De Rose et al., "A Variation-Aware Timing Modeling Approach for Write Operation in Hybrid CMOS/STT-MTJ Circuits," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 3, pp. 1086-1095, Mar., 2018. 4.20N. Xu et al., "Rare-Failure Oriented STT-MRAM Technology Optimization," IEEE Symposium on VLSI Technology, pp. 187-188., Honolulu, HI, 2018.
|