(3.220.231.235) 您好!臺灣時間:2021/03/08 06:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴安閎
研究生(外文):An-Hung Tai
論文名稱:非晶相銦鎵鋅氧化物薄膜電晶體之材料分析、電性分析及可靠度測試
論文名稱(外文):Material Analysis, Electrical Characterization, and Reliability Test of Amorphous InGaZnO Thin Film Transistors
指導教授:劉致為
指導教授(外文):Chee Wee Liu
口試委員:張書通林楚軒林吉聰
口試委員(外文):Shu-Tong ChangChu-Hsuan LinJyi-Tsong Lin
口試日期:2019-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:80
中文關鍵詞:非晶相銦鎵鋅氧化物單層薄膜電晶體多層薄膜電晶體遷移率提升不同氧流量正偏壓溫度不穩定性熱載子應力
DOI:10.6342/NTU201901824
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,著重在非晶相銦鎵鋅氧化物材料的分析,與其作為通道材料的背通道蝕刻型薄膜電晶體的電特性分析和可靠度測試。為了萃取出通不同氧流量沉積的非晶相銦鎵鋅氧化物的能帶圖,利用Tauc方法得知非晶相銦鎵鋅氧化物的能隙大小,並使用X光能譜儀得到這些材料費米能階的位置,再來利用開爾文探針力顯微鏡取得其功函數。有了以上的資訊之後,便能夠建構出通不同氧流量沉積的非晶相銦鎵鋅氧化物的能帶圖。可以發現沒有氧流量的非晶相銦鎵鋅氧化物相較於有氧流量的非晶相銦鎵鋅氧化物,其導帶的能量低了 0.28 電子伏特,而這個差異提供了製作表現更優異的薄膜電晶體的線索,因為把有氧流量的非晶相銦鎵鋅氧化物當作阻擋層的話,電子能夠被限制在由沒氧流量的非晶相銦鎵鋅氧化物做成的通道中,進而減少通道與閘極氧化層間的庫倫散射和表面粗糙度散射而提升元件表現。
雙層與三層的非晶相銦鎵鋅氧化物薄膜電晶體的場效遷移率(~17 cm2/V-s)大於單層的非晶相銦鎵鋅氧化物薄膜電晶體(~10 cm2/V-s),即是添加有氧流量的非晶相銦鎵鋅氧化物阻擋層的效果。而通道厚度也會影響元件表現,越薄的通道厚度會有更多的載子集中在上閘極氧化層與非晶相銦鎵鋅氧化物的界面。正偏壓溫度不穩定性實驗中則能發現到其不穩定性與在上閘極氧化層和非晶相銦鎵鋅氧化物界面處的電子濃度息息相關。
在熱載子應力下,可以發現到陷阱中載子的不對稱分佈,造成在正向量測與反向量測下轉移電特性的不同。不同氧流量的非晶相銦鎵鋅氧化物薄膜電晶體也發現到在熱載子應力下,有不同的不穩定特性,而只有有氧流量的非晶相銦鎵鋅氧化物薄膜電晶體在特定的熱載子應力下能觀察到轉移電特性中的扭結出現;扭結的形成原因為邊緣電晶體所貢獻的寄生通道在受到熱載子應力後被顯露了出來。最後,藉由不同組成比例的非晶相銦鎵鋅氧化物,提供了新的通道組合的可能性,期望進一步提升元件表現。
In this thesis, the exclusive material characterization of amorphous InGaZnO (a-IGZO) and the electrical properties and reliability of the single-layer and multi-layer back-channel-etch a-IGZO TFTs are presented. Several measurements are performed to obtain the band alignment between the a-IGZO with no oxygen flow (NOF, only 50 sccm Ar) and the a-IGZO with oxygen flow (OF, 20 sccm O2 plus 50 sccm Ar). Tauc method, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy measurements were used to extract the optical bandgaps, the fermi level positions, and the work functions of the NOF a-IGZO and the OF a-IGZO, respectively. The conduction band difference of 0.28 eV between the NOF and the OF layer is obtained.
With the combination of NOF and OF a-IGZO as the active layer in TFTs, the band discontinuity can serve as a barrier to confine electrons to reduce Coulomb scattering and surface roughness scattering. The double- and triple-layer TFTs therefore have highest field-effect mobility (~17 cm2/V-s) than the single-layer TFTs (~10 cm2/V-s). Moreover, the field-effect mobility is also dependent on the thickness of the channel because the gathering of the carriers on the top gate oxide/a-IGZO interface differs with different channel thickness. The positive bias temperature instability of the a-IGZO TFTs shows that the threshold voltage shift is highly associated with the carrier concentration near the interface of top gate oxide/ a-IGZO, increasing the carriers to trap into defect states.
The hot carrier stress results imply the asymmetrical distribution of trap charges, leading to the different transfer characteristics between the forward measurement and the reverse measurement. a-IGZO TFTs with different oxygen flow also have different instability behaviors under hot carrier stress. Only the a-IGZO TFTs with oxygen flow in HCS with the reverse measurement can be observed the formation of the kink in the transfer curve. The kink is caused by the parasitic channel that induced from edge transistors. Further, providing the concept of new channel configuration by different composition proportion of a-IGZO to achieve better device performance.
口試委員會審定書 i
致謝 iii
Related Publication (相關論文發表) iv
摘要 v
ABSTRACT vi
LIST OF FIGURES viii
LIST OF TABLES xii
CONTENTS 1
Chapter 1 Introduction 3
1.1 Background and Motivation 3
1.2 Thesis Organization 5
1.3 Reference 6
Chapter 2 Material Analysis of Amorphous InGaZnO Thin Films with Different Oxygen Flow 7
2.1 Introduction 7
2.2 Preparations of a-IGZO Thin Films 12
2.3 Band Alignment of a-IGZO 13
2.4 Hall Mobility of a-IGZO 21
2.5 Summary 24
2.6 Reference 25
Chapter 3 Electrical Characterization of Single-layer and Multi-layer Amorphous InGaZnO Thin Film Transistors 29
3.1 Introduction 29
3.2 Device Fabrication 31
3.3 Electrical Characterization of a-IGZO TFTs 33
3.4 Positive Bias Temperature Instability of a-IGZO TFTs with Different Channel Thickness 48
3.5 Summary 52
3.6 Reference 53
Chapter 4 The Effects of Hot Carrier Stress in Single-layer Amorphous InGaZnO Thin Film Transistors with Different Oxygen Flow 58
4.1 Introduction 58
4.2 Single-layer a-IGZO TFTs with No Oxygen Flow 61
4.3 Single-layer a-IGZO TFTs with Oxygen Flow 69
4.4 Summary 75
4.5 Reference 76
Chapter 5 Summary and Future Work 78
5.1 Summary 78
5.2 Future Work 80
[1-1] T. Kamiya, K. Nomura, and H. Hosono, ”Present status of amorphous In-Ga-Zn-O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, pp. 1–23, Sep. 2010, DOI: 10.1088/1468-6996/11/4/044305
[1-2]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono,” Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004, DOI: 10.1038/nature03090
[1-3]D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett., vol. 34, no. 4, pp. 292–294, Aug. 1977, DOI: 10.1063/1.89674
[1-4]C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1166–1168, Sep. 2013, DOI: 10.1109/LED.2013.2271783
[1-5]W. S. Shin, H. A. Ahn, J. S. Na, S. K. Hong, O. K. Kwon, J. H. Lee, J. G. Um, J. Jang, S. H. Kim, and J. S. Lee, “A driving method of pixel circuit using a-IGZO TFT for suppression of threshold voltage shift in AMLED displays,” IEEE Electron Device Lett., vol. 38, no. 6, pp. 760–762, Jun. 2017, DOI: 10.1109/LED.2017.2699669
[1-6]J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Appl. Phys. Lett., vol. 92, no. 7, pp. 072104-1–072104-3, Feb. 2008, DOI: 10.1063/1.2838380
[2-1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, ” Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004, DOI: 10.1038/nature03090
[2-2]T. Kamiya, K. Nomura, and H. Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping,” J. Display Technol., vol. 5, no. 7, pp. 273–288, Jul. 2009, DOI: 10.1109/JDT.2009.2021582
[2-3] T. Kamiya, K. Nomura, and H. Hosono, ”Present status of amorphous In-Ga-Zn-O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, pp. 1–23, Sep. 2010, DOI: 10.1088/1468-6996/11/4/044305
[2-4] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya and H. Hosono, “Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors,” Appl. Phys. Lett., vol. 99, no. 9, pp. 093507-1–093507-3, Sep. 2011, DOI: 10.1063/1.3633100
[2-5] C. Zhao, L. Bie, R. Zhang, and J. Kanicki, “Two-Dimensional Numerical Simulation of Bottom-Gate and Dual-Gate Amorphous In-Ga-Zn-O MESFETs,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 75–77, Jan. 2014. DOI: 10.1109/LED.2013.2289861
[2-6] T. Kamiya, K. Nomura, and H. Hosono, ” Electronic structure of the amorphous oxide semiconductor a-InGaZnO4–x: Tauc–Lorentz optical model and origins of subgap states,” Phys. Status Solidi A, vol. 206, no. 5, pp. 860–867, May 2009, DOI: 10.1002/pssa.200881303
[2-7] D. L. Wood and J. Tauc, “Weak absorption tails in amorphous semiconductors,” Phys. Rev. B, Condens. Matter, vol. 5, no. 8, pp. 3144–3151, Apr. 1972, DOI: 10.1103/PhysRevB.5.3144
[2-8] K. Ide, K. Ishikawa, H. Tang, T. Katase, H. Hiramatsu, H. Kumomi, H. Hosono, T. Kamiya, “Effect of base pressure on growth and optoelectronic properties of amorphous In-Ga-Zn-O: ultralow optimum oxygen supply and bandgap widening,” Phys. Status Solidi A, vol. 216, no. 5, 1700832-1 – 1700832-6, Feb. 2018, DOI: 10.1002/pssa.201700832
[2-9] D.-Y. Cho, J. Song, C. S. Hwang, W. S. Choi, T. W. Noh, J.-Y. Kim, H.-G. Lee, B.-G. Park, S.-Y. Cho, S.-J. Oh, J. H. Jeong, J. K. Jeong, and Y.-G. Mo, “Electronic structure of amorphous InGaO3(ZnO)0.5 thin film,” Thin Solid Films, vol. 518, no. 4, pp. 1079–1081, Dec. 2009, DOI: 10.1016/j.tsf.2009.01.156
[2-10] H. Tang, K. Ishikawa, K. Ide, H. Hiramatsu, S. Ueda, N. Ohashi, H. Kumomi, H. Hosono, T. Kamiya, “Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In–Ga–Zn–O thin films”, J. Appl. Phys., vol. 118, no. 20, 205703, Nov. 2015, DOI: 10.1063/1.4936552
[2-11]N. On, Y. Kang, A. Song, B. D. Ahn, H. D. Kim, J. H. Lim, K. B. Chung, S. Han, J. K. Jeong, “Origin of electrical instabilities in self-aligned amorphous In–Ga–Zn–O thin-film transistors,” IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 4965–4973, Dec. 2017, DOI: 10.1109/TED.2017.2766148
[2-12] W. Melitz, J. Shen, A. C. Kummel, and S. Lee, “Kelvin probe force microscopy and its application,” Surface Science Reports, vol. 66, no. 1, pp. 1–27, Jan. 2011, DOI: 10.1016/j.surfrep.2010.10.001
[2-13] S. Jeon, S.-E. Ahn, I. Song, C. J. Kim, U-I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, K. Ghaffarzadeh, J. Robertson, and K. Kim, “Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,” Nature Mater., vol. 11, no. 4, pp. 301–305, Feb. 2012, DOI: 10.1038/NMAT3256
[2-14]K. Sugiyama, H. Ishii, and Y. Ouchi, ” Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys., vol. 87, no. 1, 295, Jan. 2000, DOI: 10.1063/1.371859
[2-15]H.-W. Zan, C.-C. Yeh, H.-F. Meng, C.-C. Tsai, and L.-H. Chen, “Achieving High Field‐Effect Mobility in Amorphous Indium‐Gallium‐Zinc Oxide by Capping a Strong Reduction Layer,” Adv. Mater, vol. 24, no. 26, pp. 3509-3514, June 2012, DOI: 10.1002/adma.201200683
[2-16]M. Vasilopoulou, A. M. Douvas, D. G. Georgiadou, L. C. Palilis, S. Kennou, L. Sygellou, A. Soultati, I. Kostis, G. Papadimitropoulos, D. Davazoglou, and P. Argitis, “The Influence of Hydrogenation and Oxygen Vacancies on Molybdenum Oxides Work Function and Gap States for Application in Organic Optoelectronics,” J. Am. Chem. Soc., vol. 134, no. 39, pp. 16178-16187, Aug. 2012, DOI: 10.1021/ja3026906
[2-17]M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang and Z.-H. Lu,” Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3”, Adv. Funct. Mater., vol. 22, no. 21, pp. 4557-4568, Nov. 2012, DOI: 10.1002/adfm.201200615
[2-18]A. Ruiz, N. Seoane, S. Claramunt, A. G.-Loureiro, M. Porti, C. Couso, J. M.-Martinez, and M. Nafria, “Workfunction fluctuations in polycrystalline TiN observed with KPFM and their impact on MOSFETs variability,” Appl. Phys. Lett., vol. 114, no. 9, pp. 093502-1–093507-4, Mar. 2019, DOI: 10.1063/1.5090855
[2-19] J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Appl. Phys. Lett., vol. 92, no. 7, pp. 072104-1–072104-3, Feb. 2008, DOI: 10.1063/1.2838380
[3-1]T. Kamiya, K. Nomura, and H. Hosono, ”Present status of amorphous In-Ga-Zn-O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, pp. 1–23, Sep. 2010, DOI: 10.1088/1468-6996/11/4/044305
[3-2]M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, J. K. Jeong, Y.-G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Appl. Phys. Lett., vol. 90, no. 21, pp. 212114-1–212114-3, May 2007, DOI: 10.1063/1.2742790
[3-3]K. H. Ji, J.-I. Kim, Y.-G. Mo, J. H. Jeong, S. Yang, C.-S. Hwang, S.-H. K. Park, M.-K. Ryu, S.-Y. Lee, and J. K. Jeong, “Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With SiNx and SiO2 Gate Dielectrics,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1404–1406, Dec. 2010, DOI: 10.1109/LED.2010.2073439
[3-4]C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, C.-M. Leu, and T.-M. Lee, “High-Performance Flexible a-IGZO TFTs Adopting Stacked Electrodes and Transparent Polyimide-Based Nanocomposite Substrates,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1440–1446, May 2011, DOI: 10.1109/TED.2011.2109041
[3-5]L. Lu and M. Wong, “A Bottom-Gate Indium-Gallium-Zinc Oxide Thin-Film Transistor With an Inherent Etch-Stop and Annealing-Induced Source and Drain Regions,” IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 574–579, Feb. 2015, DOI: 10.1109/TED.2014.2375194
[3-6]J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K.-K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K.-W. Kwon, and Y. Park, “High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation,” Appl. Phys. Lett., vol. 93, no. 5, pp. 053505-1–053505-3, Aug. 2008, DOI: 10.1063/1.2962985
[3-7]H. Xu, L. Lan, M. Xu, J. Zou, L. Wang, D. Wang, and J. Peng, “High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique,” Appl. Phys. Lett., vol. 99, no. 25, pp. 253501-1–253501-4, Dec. 2011, DOI: 10.1063/1.3670336
[3-8]M. Nag, A. Bhoolokam, S. Steudel, A. Chasin, K. Myny, J. Maas, G. Groeseneken, and P. Heremans, “Back-channel-etch amorphous indium–gallium– zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation,” Jpn. J. Appl. Phys., vol. 53, no. 11, pp. 111401-1–111401-5, Oct. 2014, DOI: 10.7567/JJAP.53.111401
[3-9]C.-Y. Jeong, J. I. Kim, J.-H. Lee, J.-G. Um, J. Jang, and H.-I. Kwon,” Low-Frequency Noise Properties in Double-Gate Amorphous InGaZnO Thin-Film Transistors Fabricated by Back-Channel-Etch Method,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1332–1335, Dec. 2015, DOI: 10.1109/LED.2015.2489223
[3-10]J. C. Park and H.-N. Lee, “Improvement of the performance and stability of oxide semiconductor thin-film transistors using double-stacked active layers,” IEEE Electron Device Lett., vol. 33, no. 6, pp. 818–820, Jun. 2012, DOI: 10.1109/LED.2012.2190036
[3-11]P.-T. Liu, Y.-T. Chou, L.-F. Teng, F.-H. Li, C.-S. Fuh, and H.-P. D. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO:N bilayer stack channel layers,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1397–1399, Oct. 2011, DOI: 10.1109/LED.2011.2163181
[3-12]Y. J. Chung, U. K. Kim, E. S. Hwang, and C. S. Hwang, “Indium tin oxide/InGaZnO bilayer stacks for enhanced mobility and optical stability in amorphous oxide thin film transistors,” Appl. Phys. Lett., vol. 105, no. 1, pp. 013508-1–013508-5, Jul. 2014, DOI: 10.1063/1.4889856
[3-13]W. S. Liu, Y. H. Lin, C. L. Huang, and C. W. Wang, “Device performance improvement of transparent thin-film transistor with a Ti-doped GaZnO/ InGaZnO/ Ti-Doped GaZnO sandwich composite-channel structure,” IEEE Trans. Electron Devices, vol. 64, no. 6, pp. 2533–2541, Jun. 2017, DOI: 10.1109/TED.2017.2696956
[3-14]K. A. Stewart, V. Gouliouk, J. M. McGlone, J. F. Wager, ”Side-by-Side Comparison of Single- and Dual-Active Layer Oxide TFTs: Experiment and TCAD Simulation,” IEEE Trans. Electron Devices, vol. 64, no. 10, pp. 4131-4136, Oct. 2017, DOI: 10.1109/TED.2017.2743062
[3-15]T. Kamiya, K. Nomura, and H. Hosono, “Electronic structures above mobility edges in crystalline and amorphous In-Ga-Zn-O: Percolation conduction examined by analytical model,” J. Display Technol., vol. 5, no. 12, pp. 462–467, Dec. 2009, DOI: 10.1109/JDT.2009.2022064
[3-16]H. Bae, H. Choi, S. Oh, D. H. Kim, J. Bae, J. Kim, Y. H. Kim, and D. M. Kim, “Extraction Technique for Intrinsic Subgap DOS in a-IGZO TFTs by De-Embedding the Parasitic Capacitance Through the Photonic C–V Measurement,” IEEE Electron Device Lett., vol. 34, no. 1, pp. 57–59, Jan. 2013, DOI: 10.1109/LED.2012.2222014
[3-17]H. Bae, H. Choi, S. Jun, C. Jo, Y. H. Kim, J. S. Hwang, J. Ahn, S. Oh, J.-U. Bae, S.-J. Choi, D. H. Kim, and D. M. Kim, “Single-Scan Monochromatic Photonic Capacitance-Voltage Technique for Extraction of Subgap DOS Over the Bandgap in Amorphous Semiconductor TFTs,” IEEE Electron Device Lett., vol. 34, no. 12, pp. 1524–1526, Dec. 2013, DOI: 10.1109/LED.2013.2287511
[3-18]H. Choi, J. Lee, H. Bae, S.-J. Choi, D. H. Kim, and D. M. Kim, ” Bias-Dependent Effective Channel Length for Extraction of Subgap DOS by Capacitance–Voltage Characteristics in Amorphous Semiconductor TFTs,” IEEE Trans. Electron Devices, vol. 62, no. 8, pp. 2689-2694, Aug. 2015, DOI: 10.1109/TED.2015.2443492
[3-19]H. Xu, M. Xu, Z. Chen, M. Li, J. Zou, H. Tao, L. Wang, and J. Peng, “Improvement of mobility and stability in oxide thin-film transistors using triple-stacked structure,” IEEE Electron Device Lett., vol. 37, no. 1, pp. 57–59, Jan. 2016, DOI: 10.1109/LED.2015.2502990
[3-20]T.-L. Chen, K.-C. Huang, H.-Y. Lin, C. H. Chou, H. H. Lin, and C. W. Liu, “Enhanced current drive of double-gate α-IGZO thin-film transistors,” IEEE Electron Device Lett., vol. 34, no. 3, pp. 417–419, Mar. 2013, DOI: 10.1109/LED.2013.2238884
[3-21]I.-T. Cho, W.-S. Cheong, C.-S. Hwang, J.-M. Lee, H.-I. Kwon, and J.-H. Lee, “Comparative study of the low-frequency-noise behaviors in a-IGZO thin-film transistors with Al2O3 and Al2O3/SiNx gate dielectrics,” IEEE Electron Device Lett., vol. 30, no. 8, pp. 828–830, Apr. 2009, DOI: 10.1109/LED.2009.2023543
[3-22]J.-M. Lee, I.-T. Cho, J.-H. Lee, and H.-I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors,” Appl. Phys. Lett., vol. 93, no. 9, pp. 093504-1–093504-3, Sep. 2008, DOI: 10.1063/1.2977865
[3-23]A. Kiazadeh, H. L. Gomes, P. Barquinha, J. Martins, A. Rovisco, J. V. Pinto, R. Martins, and E. Fortunato,” Improving positive and negative bias illumination stress stability in parylene passivated IGZO transistors,” Appl. Phys. Lett., vol. 109, no. 5, pp. 051606-1–051606-4, Aug. 2016, DOI: 10.1063/1.4960200
[3-24]D. A. Mourey , D. A. Zhao, J. Sun, and T. N. Jackson, “Fast PEALD ZnO thin-film transistor circuits,” IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 530–534, Feb. 2010, DOI: 10.1109/TED.2009.2037178
[3-25]K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya and H. Hosono,“Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors,” Appl. Phys. Lett., vol. 99, no. 9, pp. 093507-1–093507-3, Sep. 2011, DOI: 10.1063/1.3633100
[3-26]X. Zhou, Y. Shao, L. Zhang, H. Lu, H. He, D. Han, Y. Wang, and S. Zhang,” Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors Under Positive Gate-Bias Stress,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1252–1255, Sep. 2017, DOI: 10.1109/LED.2017.2723162
[3-27]S. Choi, J. Jang, H. Kang, J. H. Baeck, J. U. Bae, K.-S. Park, S. Y. Yoon, I. B. Kang, D. M. Kim, S.-J. Choi, Y.-S. Kim, S. Oh, and D. H. Kim, ”Systematic Decomposition of the Positive Bias Stress Instability in Self-Aligned Coplanar InGaZnO Thin-Film Transistors,” IEEE Electron Device Lett., vol. 38, no. 5, pp. 580–583, May. 2017, DOI: 10.1109/LED.2017.2681204
[3-28]D. H. Kim, S. Choi, J. Jang, H. Kang, D. M. Kim, S.‐J. Choi, Y.‐S. Kim, S. Oh, J. H. Baeck, J. U. Bae, K.‐S. Park, S. Y. Yoon, and I. B. Kang, “Experimental decomposition of the positive bias temperature stress‐induced instability in self‐aligned coplanar InGaZnO thin‐film transistors and its modeling based on the multiple stretched‐exponential functions,” Society for Information Display, vol. 25, no. 2, pp. 98-107, Feb. 2017, DOI: 10.1002/jsid.531
[4-1] S.-H. Choi, and M.-K. Han, “Effect of channel widths on negative shift of threshold voltage, including stress-induced hump phenomenon in InGaZnO thin-film transistors under high-gate and drain bias stress,” Appl. Phys. Lett., vol. 100, no. 4, pp. 043503-1–043503-3, Jan. 2012, DOI: 10.1063/1.3679109
[4-2] S. Urakawa, S. Tomai, Y. Ueoka, H. Yamazaki, M. Kasami, K. Yano, D. Wang, M. Furuta, M. Horita, Y. Ishikawa, and Y. Uraoka, “Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect,” Appl. Phys. Lett., vol. 102, no. 5, pp. 053506-1–053506-4, Feb. 2013, DOI: 10.1063/1.4790619
[4-3] C.-Y. Jeong, D. Lee, S.-H. Song, J. I. Kim, J.-H Lee, and H.-I. Kwon,” A study on the degradation mechanism of InGaZnO thin-film transistors under simultaneous gate and drain bias stresses based on the electronic trap characterization,” Semicond. Sci. Technol., vol. 29, no. 4, pp. 045023-1–045023-6, Mar. 2014, DOI: 10.1088/0268-1242/29/4/045023
[4-4]D. Lee, C.-Y. Jeong, S.-H. Song, J. Xiao-Shi, J. I. Kim, J.-H. Lee, and H.-I. Kwon, “Asymmetrical degradation behaviors in amorphous InGaZnO thin-film transistors under various gate and drain bias stresses,” J. Vac. Sci. Technol. B, vol. 33, no. 1, pp. 011202-1–011202-8, Jan. 2015. DOI: 10.1116/1.4903527
[4-5]S. M. Lee, W.-J. Cho, and J. T. Park, “Device instability under high gate and drain biases in InGaZnO thin film transistors,” IEEE Trans. Device Mater. Rel., vol. 14, no. 1, pp. 471–476, Mar. 2014. DOI: 10.1109/TDMR.2013.2278990
[4-6]J. I. Kim, I.-T. Cho, S.-M. Joe, C.-Y. Jeong, D. Lee, H.-I. Kwon, S. H. Jin, and J.-H. Lee, “Effect of temperature and electric field on degradation in amorphous InGaZnO TFTs under positive gate and drain bias stress,” IEEE Electron Device Lett., vol. 35, no. 4, pp. 458–460, Apr. 2014. DOI: 10.1109/LED.2014.2306818
[4-7]T.-Y. Hsieh, T.-C. Chang, T.-C. Chen, M.-Y. Tsai, Y.-T. Chen, Y.-C. Chung, H.-C. Ting, and C.-Y. Chen, “Origin of self-heating effect induced asymmetrical degradation behavior in InGaZnO thin-film transistors,” Appl. Phys. Lett., vol. 100, no. 23, pp. 232101-1–232101-4, June 2012, DOI: 10.1063/1.4723573
[4-8]S. Choi, H. Kim, C. Jo, H.-S. Kim, S.-J. Choi, D. M. Kim, J. Park, and D. H. Kim, “The Effect of Gate and Drain Fields on the Competition Between Donor-Like State Creation and Local Electron Trapping in In–Ga–Zn–O Thin Film Transistors Under Current Stress,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1336–1339, Dec. 2015, DOI: 10.1109/LED.2015.2487370
[4-9]S. Choi, H. Kim, C. Jo, H.-S. Kim, S.-J. Choi, D. M. Kim, J. Park, and D. H. Kim, “A Study on the Degradation of In-Ga–Zn-O Thin-Film Transistors Under Current Stress by Local Variations in Density of States and Trapped Charge Distribution,” IEEE Electron Device Lett., vol. 36, no. 7, pp. 690–692, July 2015, DOI: 10.1109/LED.2015.2438333
[4-10]M. Mativenga, M. Seok, and J. Jang, “Gate bias-stress induced hump-effect in transfer characteristics of amorphous-indium-galium-zinc-oxide thin-fim transistors with various channel widths,” Appl. Phys. Lett., vol. 99, no. 12, pp. 122107-1–122107-3, Sep. 2011, DOI: 10.1063/1.2977865
[4-11]C.-F. Huang, C.-Y. Peng, Y.-J. Yang, H.-C. Sun, H.-C. Chang, P.-S. Kuo, H.-L. Chang, C.-Z. Liu, and C. W. Liu, “Stress-Induced Hump Effects of p-Channel Polycrystalline Silicon Thin-Film Transistors,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1332–1335, Dec. 2008, DOI: 10.1109/LED.2008.2007306
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔