|
[1-1] T. Kamiya, K. Nomura, and H. Hosono, ”Present status of amorphous In-Ga-Zn-O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, pp. 1–23, Sep. 2010, DOI: 10.1088/1468-6996/11/4/044305 [1-2]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono,” Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004, DOI: 10.1038/nature03090 [1-3]D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett., vol. 34, no. 4, pp. 292–294, Aug. 1977, DOI: 10.1063/1.89674 [1-4]C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1166–1168, Sep. 2013, DOI: 10.1109/LED.2013.2271783 [1-5]W. S. Shin, H. A. Ahn, J. S. Na, S. K. Hong, O. K. Kwon, J. H. Lee, J. G. Um, J. Jang, S. H. Kim, and J. S. Lee, “A driving method of pixel circuit using a-IGZO TFT for suppression of threshold voltage shift in AMLED displays,” IEEE Electron Device Lett., vol. 38, no. 6, pp. 760–762, Jun. 2017, DOI: 10.1109/LED.2017.2699669 [1-6]J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Appl. Phys. Lett., vol. 92, no. 7, pp. 072104-1–072104-3, Feb. 2008, DOI: 10.1063/1.2838380 [2-1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, ” Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004, DOI: 10.1038/nature03090 [2-2]T. Kamiya, K. Nomura, and H. Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping,” J. Display Technol., vol. 5, no. 7, pp. 273–288, Jul. 2009, DOI: 10.1109/JDT.2009.2021582 [2-3] T. Kamiya, K. Nomura, and H. Hosono, ”Present status of amorphous In-Ga-Zn-O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, pp. 1–23, Sep. 2010, DOI: 10.1088/1468-6996/11/4/044305 [2-4] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya and H. Hosono, “Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors,” Appl. Phys. Lett., vol. 99, no. 9, pp. 093507-1–093507-3, Sep. 2011, DOI: 10.1063/1.3633100 [2-5] C. Zhao, L. Bie, R. Zhang, and J. Kanicki, “Two-Dimensional Numerical Simulation of Bottom-Gate and Dual-Gate Amorphous In-Ga-Zn-O MESFETs,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 75–77, Jan. 2014. DOI: 10.1109/LED.2013.2289861 [2-6] T. Kamiya, K. Nomura, and H. Hosono, ” Electronic structure of the amorphous oxide semiconductor a-InGaZnO4–x: Tauc–Lorentz optical model and origins of subgap states,” Phys. Status Solidi A, vol. 206, no. 5, pp. 860–867, May 2009, DOI: 10.1002/pssa.200881303 [2-7] D. L. Wood and J. Tauc, “Weak absorption tails in amorphous semiconductors,” Phys. Rev. B, Condens. Matter, vol. 5, no. 8, pp. 3144–3151, Apr. 1972, DOI: 10.1103/PhysRevB.5.3144 [2-8] K. Ide, K. Ishikawa, H. Tang, T. Katase, H. Hiramatsu, H. Kumomi, H. Hosono, T. Kamiya, “Effect of base pressure on growth and optoelectronic properties of amorphous In-Ga-Zn-O: ultralow optimum oxygen supply and bandgap widening,” Phys. Status Solidi A, vol. 216, no. 5, 1700832-1 – 1700832-6, Feb. 2018, DOI: 10.1002/pssa.201700832 [2-9] D.-Y. Cho, J. Song, C. S. Hwang, W. S. Choi, T. W. Noh, J.-Y. Kim, H.-G. Lee, B.-G. Park, S.-Y. Cho, S.-J. Oh, J. H. Jeong, J. K. Jeong, and Y.-G. Mo, “Electronic structure of amorphous InGaO3(ZnO)0.5 thin film,” Thin Solid Films, vol. 518, no. 4, pp. 1079–1081, Dec. 2009, DOI: 10.1016/j.tsf.2009.01.156 [2-10] H. Tang, K. Ishikawa, K. Ide, H. Hiramatsu, S. Ueda, N. Ohashi, H. Kumomi, H. Hosono, T. Kamiya, “Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In–Ga–Zn–O thin films”, J. Appl. Phys., vol. 118, no. 20, 205703, Nov. 2015, DOI: 10.1063/1.4936552 [2-11]N. On, Y. Kang, A. Song, B. D. Ahn, H. D. Kim, J. H. Lim, K. B. Chung, S. Han, J. K. Jeong, “Origin of electrical instabilities in self-aligned amorphous In–Ga–Zn–O thin-film transistors,” IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 4965–4973, Dec. 2017, DOI: 10.1109/TED.2017.2766148 [2-12] W. Melitz, J. Shen, A. C. Kummel, and S. Lee, “Kelvin probe force microscopy and its application,” Surface Science Reports, vol. 66, no. 1, pp. 1–27, Jan. 2011, DOI: 10.1016/j.surfrep.2010.10.001 [2-13] S. Jeon, S.-E. Ahn, I. Song, C. J. Kim, U-I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, K. Ghaffarzadeh, J. Robertson, and K. Kim, “Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,” Nature Mater., vol. 11, no. 4, pp. 301–305, Feb. 2012, DOI: 10.1038/NMAT3256 [2-14]K. Sugiyama, H. Ishii, and Y. Ouchi, ” Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys., vol. 87, no. 1, 295, Jan. 2000, DOI: 10.1063/1.371859 [2-15]H.-W. Zan, C.-C. Yeh, H.-F. Meng, C.-C. Tsai, and L.-H. Chen, “Achieving High Field‐Effect Mobility in Amorphous Indium‐Gallium‐Zinc Oxide by Capping a Strong Reduction Layer,” Adv. Mater, vol. 24, no. 26, pp. 3509-3514, June 2012, DOI: 10.1002/adma.201200683 [2-16]M. Vasilopoulou, A. M. Douvas, D. G. Georgiadou, L. C. Palilis, S. Kennou, L. Sygellou, A. Soultati, I. Kostis, G. Papadimitropoulos, D. Davazoglou, and P. Argitis, “The Influence of Hydrogenation and Oxygen Vacancies on Molybdenum Oxides Work Function and Gap States for Application in Organic Optoelectronics,” J. Am. Chem. Soc., vol. 134, no. 39, pp. 16178-16187, Aug. 2012, DOI: 10.1021/ja3026906 [2-17]M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang and Z.-H. Lu,” Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3”, Adv. Funct. Mater., vol. 22, no. 21, pp. 4557-4568, Nov. 2012, DOI: 10.1002/adfm.201200615 [2-18]A. Ruiz, N. Seoane, S. Claramunt, A. G.-Loureiro, M. Porti, C. Couso, J. M.-Martinez, and M. Nafria, “Workfunction fluctuations in polycrystalline TiN observed with KPFM and their impact on MOSFETs variability,” Appl. Phys. Lett., vol. 114, no. 9, pp. 093502-1–093507-4, Mar. 2019, DOI: 10.1063/1.5090855 [2-19] J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Appl. Phys. Lett., vol. 92, no. 7, pp. 072104-1–072104-3, Feb. 2008, DOI: 10.1063/1.2838380 [3-1]T. Kamiya, K. Nomura, and H. Hosono, ”Present status of amorphous In-Ga-Zn-O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, pp. 1–23, Sep. 2010, DOI: 10.1088/1468-6996/11/4/044305 [3-2]M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, J. K. Jeong, Y.-G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Appl. Phys. Lett., vol. 90, no. 21, pp. 212114-1–212114-3, May 2007, DOI: 10.1063/1.2742790 [3-3]K. H. Ji, J.-I. Kim, Y.-G. Mo, J. H. Jeong, S. Yang, C.-S. Hwang, S.-H. K. Park, M.-K. Ryu, S.-Y. Lee, and J. K. Jeong, “Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With SiNx and SiO2 Gate Dielectrics,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1404–1406, Dec. 2010, DOI: 10.1109/LED.2010.2073439 [3-4]C.-W. Chien, C.-H. Wu, Y.-T. Tsai, Y.-C. Kung, C.-Y. Lin, P.-C. Hsu, H.-H. Hsieh, C.-C. Wu, Y.-H. Yeh, C.-M. Leu, and T.-M. Lee, “High-Performance Flexible a-IGZO TFTs Adopting Stacked Electrodes and Transparent Polyimide-Based Nanocomposite Substrates,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1440–1446, May 2011, DOI: 10.1109/TED.2011.2109041 [3-5]L. Lu and M. Wong, “A Bottom-Gate Indium-Gallium-Zinc Oxide Thin-Film Transistor With an Inherent Etch-Stop and Annealing-Induced Source and Drain Regions,” IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 574–579, Feb. 2015, DOI: 10.1109/TED.2014.2375194 [3-6]J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K.-K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K.-W. Kwon, and Y. Park, “High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation,” Appl. Phys. Lett., vol. 93, no. 5, pp. 053505-1–053505-3, Aug. 2008, DOI: 10.1063/1.2962985 [3-7]H. Xu, L. Lan, M. Xu, J. Zou, L. Wang, D. Wang, and J. Peng, “High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique,” Appl. Phys. Lett., vol. 99, no. 25, pp. 253501-1–253501-4, Dec. 2011, DOI: 10.1063/1.3670336 [3-8]M. Nag, A. Bhoolokam, S. Steudel, A. Chasin, K. Myny, J. Maas, G. Groeseneken, and P. Heremans, “Back-channel-etch amorphous indium–gallium– zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation,” Jpn. J. Appl. Phys., vol. 53, no. 11, pp. 111401-1–111401-5, Oct. 2014, DOI: 10.7567/JJAP.53.111401 [3-9]C.-Y. Jeong, J. I. Kim, J.-H. Lee, J.-G. Um, J. Jang, and H.-I. Kwon,” Low-Frequency Noise Properties in Double-Gate Amorphous InGaZnO Thin-Film Transistors Fabricated by Back-Channel-Etch Method,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1332–1335, Dec. 2015, DOI: 10.1109/LED.2015.2489223 [3-10]J. C. Park and H.-N. Lee, “Improvement of the performance and stability of oxide semiconductor thin-film transistors using double-stacked active layers,” IEEE Electron Device Lett., vol. 33, no. 6, pp. 818–820, Jun. 2012, DOI: 10.1109/LED.2012.2190036 [3-11]P.-T. Liu, Y.-T. Chou, L.-F. Teng, F.-H. Li, C.-S. Fuh, and H.-P. D. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO:N bilayer stack channel layers,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1397–1399, Oct. 2011, DOI: 10.1109/LED.2011.2163181 [3-12]Y. J. Chung, U. K. Kim, E. S. Hwang, and C. S. Hwang, “Indium tin oxide/InGaZnO bilayer stacks for enhanced mobility and optical stability in amorphous oxide thin film transistors,” Appl. Phys. Lett., vol. 105, no. 1, pp. 013508-1–013508-5, Jul. 2014, DOI: 10.1063/1.4889856 [3-13]W. S. Liu, Y. H. Lin, C. L. Huang, and C. W. Wang, “Device performance improvement of transparent thin-film transistor with a Ti-doped GaZnO/ InGaZnO/ Ti-Doped GaZnO sandwich composite-channel structure,” IEEE Trans. Electron Devices, vol. 64, no. 6, pp. 2533–2541, Jun. 2017, DOI: 10.1109/TED.2017.2696956 [3-14]K. A. Stewart, V. Gouliouk, J. M. McGlone, J. F. Wager, ”Side-by-Side Comparison of Single- and Dual-Active Layer Oxide TFTs: Experiment and TCAD Simulation,” IEEE Trans. Electron Devices, vol. 64, no. 10, pp. 4131-4136, Oct. 2017, DOI: 10.1109/TED.2017.2743062 [3-15]T. Kamiya, K. Nomura, and H. Hosono, “Electronic structures above mobility edges in crystalline and amorphous In-Ga-Zn-O: Percolation conduction examined by analytical model,” J. Display Technol., vol. 5, no. 12, pp. 462–467, Dec. 2009, DOI: 10.1109/JDT.2009.2022064 [3-16]H. Bae, H. Choi, S. Oh, D. H. Kim, J. Bae, J. Kim, Y. H. Kim, and D. M. Kim, “Extraction Technique for Intrinsic Subgap DOS in a-IGZO TFTs by De-Embedding the Parasitic Capacitance Through the Photonic C–V Measurement,” IEEE Electron Device Lett., vol. 34, no. 1, pp. 57–59, Jan. 2013, DOI: 10.1109/LED.2012.2222014 [3-17]H. Bae, H. Choi, S. Jun, C. Jo, Y. H. Kim, J. S. Hwang, J. Ahn, S. Oh, J.-U. Bae, S.-J. Choi, D. H. Kim, and D. M. Kim, “Single-Scan Monochromatic Photonic Capacitance-Voltage Technique for Extraction of Subgap DOS Over the Bandgap in Amorphous Semiconductor TFTs,” IEEE Electron Device Lett., vol. 34, no. 12, pp. 1524–1526, Dec. 2013, DOI: 10.1109/LED.2013.2287511 [3-18]H. Choi, J. Lee, H. Bae, S.-J. Choi, D. H. Kim, and D. M. Kim, ” Bias-Dependent Effective Channel Length for Extraction of Subgap DOS by Capacitance–Voltage Characteristics in Amorphous Semiconductor TFTs,” IEEE Trans. Electron Devices, vol. 62, no. 8, pp. 2689-2694, Aug. 2015, DOI: 10.1109/TED.2015.2443492 [3-19]H. Xu, M. Xu, Z. Chen, M. Li, J. Zou, H. Tao, L. Wang, and J. Peng, “Improvement of mobility and stability in oxide thin-film transistors using triple-stacked structure,” IEEE Electron Device Lett., vol. 37, no. 1, pp. 57–59, Jan. 2016, DOI: 10.1109/LED.2015.2502990 [3-20]T.-L. Chen, K.-C. Huang, H.-Y. Lin, C. H. Chou, H. H. Lin, and C. W. Liu, “Enhanced current drive of double-gate α-IGZO thin-film transistors,” IEEE Electron Device Lett., vol. 34, no. 3, pp. 417–419, Mar. 2013, DOI: 10.1109/LED.2013.2238884 [3-21]I.-T. Cho, W.-S. Cheong, C.-S. Hwang, J.-M. Lee, H.-I. Kwon, and J.-H. Lee, “Comparative study of the low-frequency-noise behaviors in a-IGZO thin-film transistors with Al2O3 and Al2O3/SiNx gate dielectrics,” IEEE Electron Device Lett., vol. 30, no. 8, pp. 828–830, Apr. 2009, DOI: 10.1109/LED.2009.2023543 [3-22]J.-M. Lee, I.-T. Cho, J.-H. Lee, and H.-I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors,” Appl. Phys. Lett., vol. 93, no. 9, pp. 093504-1–093504-3, Sep. 2008, DOI: 10.1063/1.2977865 [3-23]A. Kiazadeh, H. L. Gomes, P. Barquinha, J. Martins, A. Rovisco, J. V. Pinto, R. Martins, and E. Fortunato,” Improving positive and negative bias illumination stress stability in parylene passivated IGZO transistors,” Appl. Phys. Lett., vol. 109, no. 5, pp. 051606-1–051606-4, Aug. 2016, DOI: 10.1063/1.4960200 [3-24]D. A. Mourey , D. A. Zhao, J. Sun, and T. N. Jackson, “Fast PEALD ZnO thin-film transistor circuits,” IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 530–534, Feb. 2010, DOI: 10.1109/TED.2009.2037178 [3-25]K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya and H. Hosono,“Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors,” Appl. Phys. Lett., vol. 99, no. 9, pp. 093507-1–093507-3, Sep. 2011, DOI: 10.1063/1.3633100 [3-26]X. Zhou, Y. Shao, L. Zhang, H. Lu, H. He, D. Han, Y. Wang, and S. Zhang,” Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors Under Positive Gate-Bias Stress,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1252–1255, Sep. 2017, DOI: 10.1109/LED.2017.2723162 [3-27]S. Choi, J. Jang, H. Kang, J. H. Baeck, J. U. Bae, K.-S. Park, S. Y. Yoon, I. B. Kang, D. M. Kim, S.-J. Choi, Y.-S. Kim, S. Oh, and D. H. Kim, ”Systematic Decomposition of the Positive Bias Stress Instability in Self-Aligned Coplanar InGaZnO Thin-Film Transistors,” IEEE Electron Device Lett., vol. 38, no. 5, pp. 580–583, May. 2017, DOI: 10.1109/LED.2017.2681204 [3-28]D. H. Kim, S. Choi, J. Jang, H. Kang, D. M. Kim, S.‐J. Choi, Y.‐S. Kim, S. Oh, J. H. Baeck, J. U. Bae, K.‐S. Park, S. Y. Yoon, and I. B. Kang, “Experimental decomposition of the positive bias temperature stress‐induced instability in self‐aligned coplanar InGaZnO thin‐film transistors and its modeling based on the multiple stretched‐exponential functions,” Society for Information Display, vol. 25, no. 2, pp. 98-107, Feb. 2017, DOI: 10.1002/jsid.531 [4-1] S.-H. Choi, and M.-K. Han, “Effect of channel widths on negative shift of threshold voltage, including stress-induced hump phenomenon in InGaZnO thin-film transistors under high-gate and drain bias stress,” Appl. Phys. Lett., vol. 100, no. 4, pp. 043503-1–043503-3, Jan. 2012, DOI: 10.1063/1.3679109 [4-2] S. Urakawa, S. Tomai, Y. Ueoka, H. Yamazaki, M. Kasami, K. Yano, D. Wang, M. Furuta, M. Horita, Y. Ishikawa, and Y. Uraoka, “Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect,” Appl. Phys. Lett., vol. 102, no. 5, pp. 053506-1–053506-4, Feb. 2013, DOI: 10.1063/1.4790619 [4-3] C.-Y. Jeong, D. Lee, S.-H. Song, J. I. Kim, J.-H Lee, and H.-I. Kwon,” A study on the degradation mechanism of InGaZnO thin-film transistors under simultaneous gate and drain bias stresses based on the electronic trap characterization,” Semicond. Sci. Technol., vol. 29, no. 4, pp. 045023-1–045023-6, Mar. 2014, DOI: 10.1088/0268-1242/29/4/045023 [4-4]D. Lee, C.-Y. Jeong, S.-H. Song, J. Xiao-Shi, J. I. Kim, J.-H. Lee, and H.-I. Kwon, “Asymmetrical degradation behaviors in amorphous InGaZnO thin-film transistors under various gate and drain bias stresses,” J. Vac. Sci. Technol. B, vol. 33, no. 1, pp. 011202-1–011202-8, Jan. 2015. DOI: 10.1116/1.4903527 [4-5]S. M. Lee, W.-J. Cho, and J. T. Park, “Device instability under high gate and drain biases in InGaZnO thin film transistors,” IEEE Trans. Device Mater. Rel., vol. 14, no. 1, pp. 471–476, Mar. 2014. DOI: 10.1109/TDMR.2013.2278990 [4-6]J. I. Kim, I.-T. Cho, S.-M. Joe, C.-Y. Jeong, D. Lee, H.-I. Kwon, S. H. Jin, and J.-H. Lee, “Effect of temperature and electric field on degradation in amorphous InGaZnO TFTs under positive gate and drain bias stress,” IEEE Electron Device Lett., vol. 35, no. 4, pp. 458–460, Apr. 2014. DOI: 10.1109/LED.2014.2306818 [4-7]T.-Y. Hsieh, T.-C. Chang, T.-C. Chen, M.-Y. Tsai, Y.-T. Chen, Y.-C. Chung, H.-C. Ting, and C.-Y. Chen, “Origin of self-heating effect induced asymmetrical degradation behavior in InGaZnO thin-film transistors,” Appl. Phys. Lett., vol. 100, no. 23, pp. 232101-1–232101-4, June 2012, DOI: 10.1063/1.4723573 [4-8]S. Choi, H. Kim, C. Jo, H.-S. Kim, S.-J. Choi, D. M. Kim, J. Park, and D. H. Kim, “The Effect of Gate and Drain Fields on the Competition Between Donor-Like State Creation and Local Electron Trapping in In–Ga–Zn–O Thin Film Transistors Under Current Stress,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1336–1339, Dec. 2015, DOI: 10.1109/LED.2015.2487370 [4-9]S. Choi, H. Kim, C. Jo, H.-S. Kim, S.-J. Choi, D. M. Kim, J. Park, and D. H. Kim, “A Study on the Degradation of In-Ga–Zn-O Thin-Film Transistors Under Current Stress by Local Variations in Density of States and Trapped Charge Distribution,” IEEE Electron Device Lett., vol. 36, no. 7, pp. 690–692, July 2015, DOI: 10.1109/LED.2015.2438333 [4-10]M. Mativenga, M. Seok, and J. Jang, “Gate bias-stress induced hump-effect in transfer characteristics of amorphous-indium-galium-zinc-oxide thin-fim transistors with various channel widths,” Appl. Phys. Lett., vol. 99, no. 12, pp. 122107-1–122107-3, Sep. 2011, DOI: 10.1063/1.2977865 [4-11]C.-F. Huang, C.-Y. Peng, Y.-J. Yang, H.-C. Sun, H.-C. Chang, P.-S. Kuo, H.-L. Chang, C.-Z. Liu, and C. W. Liu, “Stress-Induced Hump Effects of p-Channel Polycrystalline Silicon Thin-Film Transistors,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1332–1335, Dec. 2008, DOI: 10.1109/LED.2008.2007306
|