(3.232.129.123) 您好!臺灣時間:2021/03/04 16:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林彥博
研究生(外文):Yen-Po Lin
論文名稱:應用於24-GHz車用雷達具多種調變機制之頻率合成器
論文名稱(外文):A Frequency Synthesizer with Multi-Modulation Mechanism for 24-GHz Automotive Radar
指導教授:李致毅李致毅引用關係
指導教授(外文):Jri Lee
口試委員:彭朋瑞陳中平
口試日期:2019-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:70
中文關鍵詞:多種調變模式車用雷達小數型頻率合成器低雜訊低小數頻率刺
DOI:10.6342/NTU201901643
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
長久以來,車輛的行車安全一直是人們關心的議題,而近年來交通量的增加,加上自動車的技術逐漸開發,使得在無線通訊領域上,車輛的雷達系統感應及防撞機制又成為了市場關切的需求。
本論文提出了一使用40奈米互補式金屬氧化半導體製程之48GHz多種調變波形之頻率合成器,此頻率合成器與帶隙參考電壓電路、功率放大器、低雜訊放大器、混頻器組成一一發四收之雷達晶片系統。此論文著重於頻率合成器的設計,針對小數型鎖相迴路中的重要電路模組做嚴謹的噪聲分析,並且內建產生各種調變波形之數位電路,以滿足後端雷達系統在不同偵測距離下所需的數位訊號處理資訊。
其頻率合成器的量測結果為在消耗功率為90毫瓦下,其23GHz的時鐘之1MHz偏移頻率下的相位雜訊為-100dBc/Hz,10MHz偏移頻率下的相位雜訊為-115dBc/Hz,並且從100Hz至1GHz積分之方均根時脈抖動為365fs,小數頻率刺小於-59dBc,頻率解析度為119Hz,展頻頻率範圍為250MHz;在雷達系統的量測上,在沒有外部的Sallen-Key濾波器及後端數位訊號處理,僅透過外部收發端天線之增益,並且晶片中的功率放大器提供6分貝毫瓦的功率以及接收器為26分貝的增益情形下,雷達可偵測到之範圍為5公尺以內之目標。
For a long time, the driving safety has always been a topic of concern. In recent years, the increase of traffic volume and the development of automatic car technology have made the radar system sensing and collision avoidance mechanism of the vehicle become market concerns in the field of wireless communication.
This thesis presents a 48GHz frequency synthesizer with multi-modulation waveform applied for 24GHz automotive radar in 40-nm CMOS technology. The 1T4R radar system chipset includes the frequency synthesizer, bandgap reference, power amplifier, low-noise amplifier and mixer. This thesis focuses on the design of frequency synthesizers and does a rigorous noise analysis for important circuit blocks in fractional-N phase-locked loops. With built-in digital circuits for generating various modulated waveforms, the chipset meets the digital signal processing information required by the back-end radar system at different detection distances.
Measurement result shows that the frequency synthesizer of 23GHz carrier achieves the phase noise of -100dBc/Hz at 1MHz offset, -115dBc/Hz at 10MHz offset, 365fs root-mean-square jitter integrated from 100Hz to 1GHz, and below -59dBc fractional spur. Frequency resolution is 119Hz and frequency range of spread spectrum is 250MHz. Without external Sallen-Key filter and back-end digital signal processing, the radar system can detect targets within a range of 5-m only through transceiver antenna, 6dbm power provided by power amplifier and receiver conversion gain of 26dB.
口試委員會審定書 #
中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the Thesis 2
Chapter 2 Introduction of Traditional Phase-Locked Loops 3
2.1 Basic Theorem 3
2.2 Problem Discussion 5
Chapter 3 A 48-GHz Low Phase Noise Fractional–N Phase-Locked Loop 9
3.1 Design Consideration 9
3.2 Building Blocks 13
3.2.1 Single-sideband Phase Frequency Detector 13
3.2.2 Operational Transconductance Amplifier Charge Pump 16
3.2.3 Loop Filter 17
3.2.4 LC-tank Voltage Controlled Oscillator 18
3.2.5 Frequency Divider 21
3.3 Phase Noise Analysis 26
3.3.1 VCO Noise Analysis 26
3.3.2 Delta-sigma Modulator Noise Analysis 32
3.3.3 Frequency Divider Noise Analysis 38
3.3.4 Total Phase-Locked Loop Phase Noise Analysis 41
Chapter 4 Multi-Modulation Technique 48
4.1 Introduction of FMCW and MFSK Modulation 48
4.2 Frequency Control Word Circuit 52
Chapter 5 Measurement Results 56
5.1 Set Up 56
5.1 Chip-on-Board Measurement Result 59
Chapter 6 Conclusions 66
REFERENCE 68
[1]Stove, A. G, “Linear FMCW radar techniques”, IEE Proceedings-F, Vol. 139, No. 5, Oct. 1992.
[2]E. Hyun, W. Oh, and J. H. Lee, “Multi-Target Detection Algorithm for FMCW Radar,” in Proc. Radar Conference (RadarConf), Atlanta, GA, USA, May 2012, pp. 0338-0341.
[3]H. Y. Zhou, P. F. Cao, and S. J. Chen, “A Novel Waveform Design for Multi-target Detection in Automotive FMCW Radar,” in Proc. Radar Conference (RadarConf), Philadelphia, PA, USA, May 2016, pp. 1-5.
[4] Z. Duan, Y. Wu, M. Li, and W. Wang, “A novel FMCW waveform for multi-target detection and the corresponding algorithm,” IEEE 5th International Symposium on Electromagnetic Compatibility, Beijing, Oct. 2017.
[5]H. Rohling, M. -M. Meinecke, “Waveform design principles for automotive radar systems Radar”, 2001 CIE International Conference on Proceedings, 2001, pp.1-4.
[6]Rohling, H., Moller, C, “Radar waveform for automotive radar systems and applications”, Radar Conference 2008, pp. 1-4, May 2008.
[7]E. Villegas, E. Lopez-Aguilera, R. Vidal, J. Paradells, Effect of adjacentchannel interference in IEEE 802.11 WLANs, CrownCom 2007.
[8]L. Chen, P. Peng, C. Kao, Y. Chen, and Jri Lee, "CW/FMCW/Pulse Radar Engines for 24/26GHz Multi-Standard Applications in 65nm CMOS," Digest of Asian Solid-State Circuits Conference, 2015.
[9]F. M. Gardner, Phaselock Techniques, Second Edition, New York: Wiley & Sons, 1979.
[10]B. Razavi, Design of Analog CMOS Integrated Circuits, Boston: McGraw-Hill, 2001.
[11]M. Van Paemel, “Analysis of a charge-pump PLL: A new model,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2490–2498, Jul. 1994.
[12]ISM band [Online]. Available:
https://en.wikipedia.org/wiki/ISM_band
[13]Jri Lee, “A 75-GHz PLL in 90-nm CMOS Technology,” Digest of International Solid-State Circuits Conference, pp. 432-433, Feb. 2007.
[14]B. Razavi, RF Microelectronics., Second Edition, Prentice-Hall, 2012.
[15]Mazzanti, A., and Andreani, P.: “Class-C harmonic CMOS VCOs, with a general result on phase noise”, IEEE J. Solid-State Circuits, 2008, 43, (12), pp. 2716-2729.
[16]P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “On the phase noise and phase error performances of multiphase LC VCO,” IEEE J. Solid-State Circuits, vol. 39, no. 11, Nov.2004, pp. 1883-1893.
[17]Andreani, P., and Fard, A.: “More on the 1/f2 phase noise performance of CMOS differential-pair LC-tank oscillators”, J. Solid-State Circuits, 2006, 41, (12), pp. 2703–2712.
[18]Jri Lee, Y. Li, M. Hung, and S. Huang, “A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 2746-2756, Dec. 2010.
[19]S. Levantino, L. Romano, S. Pellerano et al “Phase Noise in digital frequency dividers” IEEE Journal of Solid-State Circuits, Vol. 39, May, pp: 775-784, 2004.
[20]A. Hussein, S. Vasadi, and J. Paramesh, “A 50–66 GHz phase-domain digital frequency synthesizer with low phase noise and low fractional spurs”, IEEE J. Solid-State Circuits, vol. 52, no. 12, Dec. 2017.
[21]W. Wu et al., “A 56.4-to-63.4 GHz Multi-Rate All-Digital Fractional-N PLL for FMCW Radar Applications in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol.49, no.5, pp.1081-1096, May 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔