跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/30 16:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱諠
研究生(外文):Yu-Hsuan Chen
論文名稱:不對稱之電場耦合效應對超薄氧化層金氧半元件之電特性影響與其相關應用
論文名稱(外文):The Asymmetric Coupling Effect on the I-V Characteristic of Ultrathin-Oxide MIS Devices and Its Applications
指導教授:胡振國胡振國引用關係
指導教授(外文):Jenn-Gwo Hwu
口試委員:鄭晃忠張子璿
口試委員(外文):Huang-Chung ChengTzu-Hsuan Chang
口試日期:2019-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:73
中文關鍵詞:金氧半電容元件超薄氧化層耦合效應光感測器
DOI:10.6342/NTU201901361
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要在探討不對稱之電場耦合效應對超薄氧化層之穿隧金氧半元件之電特性影響與機制。此元件為一同心圓之結構,由內部元件以及外環所組成。在本論文之第二章,為了探討在擁有雙邊緣之環形元件中內外邊緣對飽和電流之貢獻程度,我們因此設計了特殊的光罩圖案對照組。由實驗上及模擬上的結果看來,在一環形結構中,較外部的邊緣主導了大部分的飽和電流。此外,有別於先前在探討光感測器應用時多半針對外環作為控制閘而內部元件為感測器的耦合效果做討論,在本研究中我們還將內外元件交換角色去作探討,也就是以內部為控制閘而外環為感測元件的操作情況。在角色對調後,可以看到在兩種操作情形下有明顯的差別。於是,我們提出了不對稱的耦合效應去解釋上述觀察到的相異現象,即外部耦合內部時為有效耦合但內部耦合外部時為有限耦合之概念。在用SILVACO TCAD軟體做模擬時也有觀察到上述內外耦合電場強度不相等的現象,能作為近一步的佐證。隨後在本論文之第三章,我們發現利用第二章所提及的不對稱耦合效應,在內部為控制閘而外環為感測元件的操作情況下,可以在較小的偏壓下獲得較大的光對暗電流比例,因而達到更有效率地利用能源的效果。
In this thesis, the asymmetric coupling effect on current-voltage characteristics of a double metal-insulator-semiconductor (MIS(p)) tunnel diode (TD) in a concentric structure has been investigated. In chapter 2, we design two sets of patterns to discuss the extent that the inner and outer fringes play in a double-fringed MIS TD with a ring structure and compare to the case of a single-fringed MIS TD. From both of the experimental and simulated results, it is noted that the outer fringe of the ring-shaped MIS(p) has a larger contribution to saturated current. Apart from the conventional operation applied for the photo-sensing purpose that the inner device serves as a sensor and the outer ring plays as the control gate (ISOG), we examine it from a contrary perspective in which the inner device and outer ring exchange their roles (IGOS). By comparing the results under these two operating modes, a distinct difference can be observed and therefore we proposed the idea of asymmetric coupling effect to account for it. The different coupling extent between inner device and outer ring is further verified by the simulated results using SILVACO TCAD. In chapter 3, we further examine the photo-sensing performance under both the ISOG and IGOS operations. It is found that by utilizing the asymmetric coupling effect in the IGOS mode, a higher light-to-dark current ratio can be achieved while a smaller bias is needed and therefore be more power-efficient.
誌謝 I
摘要 II
Abstract III
Contents IV
Figure Captions VI
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 I-V Characteristics of MIS(p) Tunnel Diodes 2
1-2-1 Effect of Oxide Thickness 3
1-2-2 Effect of Additional Minority Charges Supply 4
1-2-3 Dependencies on Area and Perimeter 5
1-3 Photo-detecting Application of MIS(p) Tunnel Diodes 6
1-4 TCAD Simulation 8
1-5 Summary 9
Chapter 2 Roles of Inner and Outer Fringe and Asymmetric Coupling Effect in Concentric Double-MIS(p) Tunneling Diodes 15
2-1 Introduction 16
2-2 Experimental Details and TCAD Simulation 17
2-3 Results and Discussion 18
2-3-1 I-V Characteristics of Single-Fringed MIS TDs 18
2-3-2 Role of Inner and Outer Fringe in a Double-Fringed MIS TD 20
2-3-3 Asymmetric Coupling Effect Observed in Two Operating Modes 21
2-3-4 TCAD Simulation Results 23
2-4 Summary 28
Chapter 3 Studies and Applications of Concentric Double-MIS(p) Tunnel Diodes under IGOS and ISOG Operation Modes 43
3-1 Introduction 43
3-2 Experimental 44
3-3 Results and Discussion 45
3-3-1 Detailed Discussion of ISOG and IGOS Operating Modes 45
3-3-2 Better Photo-sensitivity Utilizing Asymmetric Coupling Effect under IGOS Operation Mode 49
3-3-3 Effect of Oxide Thickness on IGOS and ISOG Operating Modes 51
3-4 Summary 53
Chapter 4 Conclusion and Future Work 61
4-1 Conclusion 61
4-2 Suggestions on Future Work 62
4-2-1 Experimental Part 62
4-2-1-1 Effect of Separation Gap on Outer Ring 62
4-2-1-2 Transfer Characteristics in IGOS and ISOG Modes and Their
Dependency on Oxide Thickness 65
4-2-2 Simulated Part 67
4-2-2-1 Illuminated Situation 67
4-2-2-2 Studies at Different Depths 67
References 69
[1] C. S. Liao, and J. G. Hwu, “Subthreshold Swing Reduction by Double Exponential Control Mechanism in an MOS Gated-MIS Tunnel Transistor,” IEEE Transactions on Electron Devices, vol. 62, no. 6, pp. 2061-2065, Jun, 2015.
[2] Y. K. Lin, and J. G. Hwu, “Photosensing by Edge Schottky Barrier Height Modulation Induced by Lateral Diffusion Current in MOS(p) Photodiode,” IEEE Transactions on Electron Devices, vol. 61, no. 9, pp. 3217-3222, Sep, 2014.
[3] S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay, “Towards the Implementation of IoT for Environmental Condition Monitoring in Homes,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3846-3853, Oct, 2013.
[4] S. C. Folea, and G. Mois, “A Low-Power Wireless Sensor for Online Ambient Monitoring,” IEEE Sensors Journal, vol. 15, no. 2, pp. 742-749, Feb, 2015.
[5] X. Wang, M. Y. Liao, Y. T. Zhong, J. Y. Zheng, W. Tian, T. Y. Zhai, C. Y. Zhi, Y. Ma, J. N. A. Yao, Y. Bando, and D. Golberg, “ZnO Hollow Spheres with Double-Yolk Egg Structure for High-Performance Photocatalysts and Photodetectors,” Advanced Materials, vol. 24, no. 25, pp. 3421-3425, Jul, 2012.
[6] Z. Y. Zhan, L. X. Zheng, Y. Z. Pan, G. Z. Sun, and L. Li, “Self-Powered, Visible-Light Photodetector Based on Thermally Reduced Graphene Oxide-ZnO (rGO-ZnO) Hybrid Nanostructure,” Journal of Materials Chemistry, vol. 22, no. 6, pp. 2589-2595, 2012.
[7] T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of High-Quality In2Se3 Nanowire Arrays toward High-Performance Visible-Light Photodetectors,” Acs Nano, vol. 4, no. 3, pp. 1596-1602, Mar, 2010.
[8] D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-High-Responsivity Broadband Detection of Si Metal-Semiconductor-Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays,” Acs Nano, vol. 5, no. 10, pp. 7748-7753, Oct, 2011.
[9] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, “A Novel Photodetector Using MOS Tunneling Structures,” IEEE Electron Device Letters, vol. 21, no. 6, pp. 307-309, Jun, 2000.
[10] W. J. Chein, L. L. Chung, and F. L. Tan, “Current Multiplication In MIS Structures,” Solid-State Electronics, vol. 27, no. 1, pp. 1-11, 1984.
[11] F. Zhang, G. S. Sun, H. L. Huang, Z. Y. Wu, L. Wang, W. S. Zhao, X. F. Liu, G. G. Yan, L. Zheng, L. Dong, and Y. P. Zeng, “High-Performance 4H-SiC-Based Metal-Insulator-Semiconductor Ultraviolet Photodetectors With SiO2 and Al2O3/SiO2 Films,” IEEE Electron Device Letters, vol. 32, no. 12, pp. 1722-1724, Dec, 2011.
[12] Y. H. Shih, and J. G. Hwu, “An on-chip temperature sensor by utilizing a MOS tunneling diode,” IEEE Electron Device Letters, vol. 22, no. 6, pp. 299-301, Jun, 2001.
[13] C. S. Liao, W. C. Kao, and J. G. Hwu, “Energy-Saving Write/Read Operation of Memory Cell by Using Separated Storage Device and Remote Reading With an MIS Tunnel Diode Sensor,” IEEE Journal of the Electron Devices Society, vol. 4, no. 6, pp. 424-429, Nov, 2016.
[14] M. A. Green, and J. Shewchun, “Current Multiplication In Metal-Insulator-Semiconductor (MIS) Tunnel-Diodes,” Solid-State Electronics, vol. 17, no. 4, pp. 349-365, 1974.
[15] Y. K. Lin, L. Lin, and J. G. Hwu, “Minority Carriers Induced Schottky Barrier Height Modulation in Current Behavior of Metal-Oxide-Semiconductor Tunneling Diode,” Ecs Journal of Solid State Science and Technology, vol. 3, no. 6, pp. Q132-Q135, 2014.
[16] J. Vanderspiegel, and G. J. Declerck, “Theoretical and Practical Investigation of the Thermal Generation in Gate Controlled Diodes,” Solid-State Electronics, vol. 24, no. 9, pp. 869-877, 1981.
[17] K. K. Xu, H. T. Liu, and Z. Y. Zhang, “Gate-Controlled Diode Structure Based Electro-Optical Interfaces In Standard Silicon-CMOS Integrated Circuitry,” Applied Optics, vol. 54, no. 21, pp. 6420-6424, Jul, 2015.
[18] K. K. Xu, “Integrated Silicon Directly Modulated Light Source Using p-Well in Standard CMOS Technology,” IEEE Sensors Journal, vol. 16, no. 16, pp. 6184-6191, Aug, 2016.
[19] W. T. Hou, and J. G. Hwu, “Photo Response Enhancement in MIS(p) Tunnel Diode via Coupling Effect by Controlling Neighboring Device Inversion Level,” Ecs Journal of Solid State Science and Technology, vol. 6, no. 10, pp. Q143-Q147, 2017.
[20] Y. H. Chen, and J. G. Hwu, “Light Sensing Enhancement and Energy Saving Improvement in Concentric Double-MIS(p) Tunnel Diode Structure With Inner Gate Outer Sensor Operation,” IEEE Transactions on Electron Devices, vol. 65, no. 11, pp. 4910-4915, Nov, 2018.
[21] K. J. Yang, and C. M. Hu, “MOS Capacitance Measurements for High-Leakage Thin Dielectrics,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1500-1501, Jul, 1999.
[22] W. H. Wu, B. Y. Tsui, Y. P. Huang, F. C. Hsieh, M. C. Chen, Y. T. Hou, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang, “Two-frequency C-V Correction Using Five-Element Circuit Model For High-K Gate Dielectric and Ultrathin Oxide,” IEEE Electron Device Letters, vol. 27, no. 5, pp. 399-401, May, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top