(3.238.7.202) 您好!臺灣時間:2021/03/04 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王鈞
研究生(外文):Chun Wang
論文名稱:非正交多工接取下考慮混合式自動重送請求之子頻帶排程技術
論文名稱(外文):Subband Allocation for Non-Orthogonal Multiple Access with Hybrid ARQ
指導教授:謝宏昀
指導教授(外文):Hung-Yun Hsieh
口試委員:周俊廷高榮鴻韶光俊
口試委員(外文):Chun-Ting ChouRung-Hung GauQuang-Tuan Thieu
口試日期:2019-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:57
中文關鍵詞:非正交多工接取混合式自動重送請求子頻帶排程資源管理
DOI:10.6342/NTU201904095
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們研究了非正交多工接取(NOMA)系統下,子頻帶公平排程技術的系統級效能表現。非正交多工的主要核心概念是在發射端波束中,重疊多個用戶信號,並且在接收端使用連續解碼干擾消除(SIC)技術,基站在傳送端會對不同的使用者分配不同的訊號功率,達成將一個資源分配給多個使用者,來獲取系統最大的效能增益。這種下行鏈路傳輸系統可用於增進,符合LTE標準的效能表現。此外,混合式自動重送請求(HARQ)是鏈路適應的重要組成部分,它在現今的無線通信系統中也發揮著重要作用。HARQ的基本概念是透過重新發送未成功解碼的數據分組來獲得信道編碼增益,進而減少用戶的中斷概率,因此可以提高系統的可靠性。為了在傳輸之前降低複雜度和計算資源,在模擬方面,我們使用迭代的演算法來實現在子頻帶排程下,公平分配資源的環境,其目標是尋找最佳的排程,包括各個子頻帶的使用者配對,以及其功率分配係數。為求最大化系統總吞吐量和使用者的公平性,我們採用比例公平演算法(PF)模型,引入最佳化分析方法評估下行NOMA系統的性能。然而在NOMA系統中實行HARQ,比起傳統的OMA寬頻帶系統,NOMA系統下的子頻帶排程更具挑戰性。因為當同時進行複數子頻帶的使用者以及功率分配係數的排程時,在傳輸過程中有使用者以及功率分配的限制。為了解決上述問題,我們提出了一種基於交叉熵方法的啟發式算法解決子頻帶使用者對和功率分配的最佳化問題 PF排程,並用HARQ實現滿足中斷機率的限制。與其他子頻帶排程演算法,如傳統貪婪式演算法和序列貪婪式演算法的性能相比,我們提出的演算法能夠提升約50%的整體資料量。
This thesis investigates the system-level performance of non-orthogonal multiple access (NOMA) system. The main concept of NOMA is to transmit composition of multi-user signals in a beam at the transmitter and decode with successive interference cancellation (SIC) at the receiver, which is a promising downlink multiple access scheme for further LTE enhancement. Hybrid automatic repeat request (HARQ) is an essential part of link adaptation, and it is also playing important roles in modern wireless communication system. System with HARQ has channel coding gain by re-transmitting data packets which decoded unsuccessfully. Thus, reliability of system can be improved by reducing outage probability of users. In order to reduce complexity and computing resources before transmission, we simulate the environment which implemented with iterative subband allocation scheduling for user pairs and power allocation coefficient to research the effect of scheduling algorithms. In order to maximize total throughput and fairness, the proportionally fair (PF) scheduling model is adopted, and optimization analysis methods are introduced to evaluate downlink NOMA system performance. However, implementation of HARQ is more challenging in NOMA system with subband scheduling scenario than in traditional OMA widebannd system, because of constraints for scheduling users and power within multiple subbands in the same time. We propose a heuristic algorithm based on cross entropy method to solve the optimization problem about user pair and power allocation for subband PF scheduling, and implement with HARQ in order to meet outage probability constraint and discuss about its benefits and trade-off. Compared with other sub- band allocation algorithms, Simulation results show that proposed algorithm have about 50% performance gain of baseline traditional method and sequential greedy approach.
Abstract ii
List of Tables v
List of Figures vi
Chapter 1 Introduction 1
Chapter 2 Background and Related Work 4
2.1 NOMA with SIC system 4
2.2 Hybrid ARQ 6
2.3 Related Work 7
2.3.1 NOMA with HARQ 7
2.3.2 Scheduling in subband scenario 10
Chapter 3 Scenario and Problem Formulation 13
3.1 Network Scenario 13
3.2 System Model 16
3.2.1 Signal-to-noise ratio analysis 16
3.2.2 Outage probability analysis 18
3.2.3 Long Term Average Throughput analysis 21
3.3 Problem Formulation 24
3.3.1 Objective function 24
3.3.2 User scheduling constraints 24
3.3.3 Power allocation constraints 25
3.3.4 Outage probability constraints 26
Chapter 4 Solving the Scheduling Problem with Power Constraints 29
4.1 Overall Structure 29
4.2 Greedy Methods 31
4.2.1 Baseline traditional greedy method 31
4.2.2 Sequential greedy method 32
4.2.3 Feasibility of scheduling and power allocation 33
4.3 Cross Entropy Method 38
4.4 Decoupled Sub-problems 42
Chapter 5 Performance Evaluation 45
5.1 Simulation Setting 45
5.2 Simulation Result 46
5.2.1 LTAT evaluation 46
5.2.2 Efficiency evaluation 47
Chapter 6 Conclusion and Future Work 52
References 53
[1] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in 2013 International Symposium on Intelligent Signal Processing and Communication Systems, Nov 2013, pp. 770–774.
[2] A. Benjebbour, A. Li, Y. Kishiyama, H. Jiang, and T. Nakamura, “System-level performance of downlink NOMA combined with SU-MIMO for future LTE enhancements,” in 2014 IEEE Globecom Workshops (GC Wkshps), Dec 2014, pp. 706–710.
[3] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband (Second Edition). Academic Press, Jan 2014.
[4] M. Yang and H. Hsieh, “Moving towards non-orthogonal multiple access in next-generation wireless access networks,” in 2015 IEEE International Conference on Communications (ICC), June 2015, pp. 5633–5638.
[5] Z. Shi, S. Ma, H. ElSawy, G. Yang, and M. Alouini, “Cooperative HARQ-Assisted NOMA Scheme in Large-Scale D2D Networks,” IEEE Transactions on Communications, vol. 66, no. 9, pp. 4286–4302, Sep. 2018.
[6] A. Li, Y. Lan, X. Chen, and H. Jiang, “Non-orthogonal multiple access (NOMA) for future downlink radio access of 5G,” China Communications, vol. 12, no. Supplement, pp. 28–37, December 2015.
[7] S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, “Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges,” IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 721–742, Secondquarter 2017.
[8] J. Cui, Z. Ding, and P. Fan, “A Novel Power Allocation Scheme Under Outage Constraints in NOMA Systems,” IEEE Signal Processing Letters, vol. 23, no. 9, pp. 1226–1230, Sep. 2016.
[9] Z. Yang, Z. Ding, P. Fan, and N. Al-Dhahir, “A General Power Allocation Scheme to Guarantee Quality of Service in Downlink and Uplink NOMA Systems,” IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7244–7257, Nov 2016.
[10] S. Timotheou and I. Krikidis, “Fairness for Non-Orthogonal Multiple Access in 5G Systems,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1647–651, Oct 2015.
[11] J. Umehara, Y. Kishiyama, and K. Higuchi, “Enhancing user fairness in non-orthogonal access with successive interference cancellation for cellular downlink,” in 2012 IEEE International Conference on Communication Systems (ICCS), Nov 2012, pp. 324–328.
[12] M. Hojeij, J. Farah, C. A. Nour, and C. Douillard, “Resource Allocation in Downlink Non-Orthogonal Multiple Access (NOMA) for Future Radio Access,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), May 2015, pp. 1–6.
[13] M. W. El Bahri, H. Boujernaa, and M. Siala, “Performance comparison of type I, II and III hybrid ARQ schemes over AWGN channels,” in 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT ’04., vol. 3, Dec 2004, pp. 1417–1421 Vol. 3.
[14] Z. Shi, H. Ding, S. Ma, and K. Tam, “Analysis of HARQ-IR Over Time-Correlated Rayleigh Fading Channels,” IEEE Transactions on Wireless Communications, vol. 14, no. 12, pp. 7096–7109, Dec 2015.
[15] Z. Shi, S. Ma, G. Yang, K. Tam, and M. Xia, “Asymptotic outage analysis of HARQ-IR over time-correlated nakagami-m fading channels,” IEEE Transactions on Wireless Communications, vol. 16, no. 9, pp. 6119–6134, Sep. 2017.
[16] Z. Shi, H. Ding, S. Ma, K. Tam, and S. Pan, “Inverse Moment Matching Based Analysis of Cooperative HARQ-IR Over Time-Correlated Nakagami Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 66, no. 5, pp. 3812–3828, May 2017.
[17] Z. Ding, M. Peng, and H. V. Poor, “Cooperative Non-Orthogonal Multiple Access in 5G Systems,” IEEE Communications Letters, vol. 19, no. 8, pp. 1462–1465, Aug 2015.
[18] J. Choi, “On HARQ-IR for Downlink NOMA Systems,” IEEE Transactions on Communications, vol. 64, no. 8, pp. 3576–3584, Aug 2016.
[19] D. Cai, Y. Xu, F. Fang, S. Yan, and P. Fan, “Outage Probability of NOMA with Partial HARQ Over Time-Correlated Fading Channels,” in 2018 IEEE Globecom Workshops (GC Wkshps), Dec 2018, pp. 1–6.
[20] D. Cai, Y. Xu, F. Fang, Z. Ding, and P. Fan, “On the Impact of Time-Correlated Fading for Downlink NOMA,” IEEE Transactions on Communi- cations, vol. 67, no. 6, pp. 4491–4504, June 2019.
[21] D. Cai, Z. Ding, P. Fan, and Z. Yang, “On the Performance of NOMA With Hybrid ARQ,” IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp. 10 033–10 038, Oct 2018.
[22] Y. Xu, D. Cai, Z. Ding, C. Shen, and G. Zhu, “Average Power Minimization for Downlink NOMA Transmission with Partial HARQ,” in 2018 IEEE Globecom Workshops (GC Wkshps), Dec 2018, pp. 1–5.
[23] Y. Xu, D. Cai, F. Fang, Z. Ding, C. Shen, and G. Zhu, “Outage Analysis and Power Allocation for HARQ-CC Enabled NOMA Downlink Transmission,” in 2018 IEEE Global Communications Conference (GLOBECOM), Dec 2018, pp. 1–6.
[24] D. Roh, M. Kim, and D. Cho, “Improvement of HARQ based on redundant data of near user in non-orthogonal multiple access,” in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Com- munications (PIMRC), Sep. 2016, pp. 1–6.
[25] A. Li, A. Benjebbour, X. Chen, H. Jiang, and H. Kayama, “Investigation on hybrid automatic repeat request (HARQ) design for NOMA with SU-MIMO,” in 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Aug 2015, pp. 590–594.
[26] E. Okamoto, “An Improved Proportional Fair Scheduling in Downlink Non- Orthogonal Multiple Access System,” in 2015 IEEE 82nd Vehicular Technol- ogy Conference (VTC2015-Fall), Sep. 2015, pp. 1–5.
[27] Z. Eddo, M. Hojeij, C. A. Nour, J. Farah, and C. Douillard, “Evaluation of Intra-Subband Power Allocation for a Downlink Non-Orthogonal Multiple Access (NOMA) System,” in 2016 IEEE Globecom Workshops (GC Wkshps), Dec 2016, pp. 1–7.
[28] M. Kountouris and D. Gesbert, “Memory-based opportunistic multi-user beamforming,” in Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., Sep. 2005, pp. 1426–1430.
[29] C. Wang, J. Lin, and J. Wu, “Resource Allocation and User Grouping for Sum Rate and Fairness Optimization in NOMA and IoT,” in 2018 IEEE Conference on Standards for Communications and Networking (CSCN), Oct 2018, pp. 1–6.
[30] M. Peng, J. Zeng, B. Liu, J. Mei, X. Su, X. Xu, and L. Xiao, “Resource Allocation in Multi-User NOMA Wireless Systems,” in 2018 12th International Symposium on Medical Information and Communication Technology (ISMICT), March 2018, pp. 1–5.
[31] F. Fang, H. Zhang, J. Cheng, and V. C. M. Leung, “Energy efficiency of resource scheduling for non-orthogonal multiple access (NOMA) wireless network,” in 2016 IEEE International Conference on Communications (ICC), May 2016, pp. 1–5.
[32] A. Chelli and M. Alouini, “On the Performance of Hybrid-ARQ with Incremental Redundancy and with Code Combining over Relay Channels,” IEEE Transactions on Wireless Communications, vol. 12, no. 8, pp. 3860–3871, August 2013.
[33] 3GPP, “Technical Specification Group Radio Access Network; Study on Downlink Multiuser Superpostion Transmission (MUST) for LTE,” 3rd Generation Partnership Project, release 13, Tech. Rep., 2015.
[34] G. Caire and D. Tuninetti, “The throughput of Hybrid-ARQ protocols for the Gaussian collision channel,” IEEE Transactions on Information Theory, vol. 47, no. 5, pp. 1971–1988, July 2001.
[35] M. Zorzi and R. R. Rao, “On the use of renewal theory in the analysis of ARQ protocols,” IEEE Transactions on Communications, vol. 44, no. 9, pp. 1077–1081, Sep. 1996.
[36] 3GPP, “Physical layer procedures,” 3rd Generation Partnership Project, Tech. Rep. TS-36.213, 2016, version 13.0.0.
[37] NTT DOCOMO, “3GPP TSG RAN WG1 Meeting #81: Evaluation methodologies for downlink multiuser superposition transmissions,” 3GPP, Fukuoka, Japan, Tech. Rep. R1-153332, May 2015.
[38] M. Yang, “Loss-Aware Scheduling and Power Allocation for Non-Orthogonal Multiple Access,” Master’s thesis, National Taiwan University, Taipei, Taiwan, July 2014.
[39] C. Wang, “Subband Allocation for Proportional Fair Scheduling in Non-Orthogonal Multiple Access,” Master’s thesis, National Taiwan University, Taipei, Taiwan, August 2018.
[40] Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulation, 3GPP, Sept. 2003, technical Report 25.996 v6.1.0.
[41] User Equipment (UE) Radio Transmission and Reception, 3GPP, evolved Universal Terrestrial Radio Access (E-UTRA).
[42] Base Station (BS) radio transmission and reception., 3GPP, evolved Universal Terrestrial Radio Access (E-UTRA).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔