|
[1] 3GPP. DRX parameters in LTE. Tdoc R2071286, 3rd Generation Partnership Project (3GPP), 03 2007. Nokia Tdoc to TSNRAN WG2 #57bis meeting. [2] 3GPP. Ondemand System Information Acquisition. Tdoc 2164948, 3rd Generation Partnership Project (3GPP), 08 2016. MediaTek Inc. Tdoc to TSNRAN2 #95 meeting. [3] 3GPP. Ondemand SI Delivery: Signaling Aspects. Tdoc R21700011, 3rd Generation Partnership Project (3GPP), 01 2017. Samsung Tdoc to TSNRAN WG2 NR meeting. [4] 3GPP. Nr; overall description; stage2. Technical Specification (TS) 38.300, 3rd Generation Partnership Project (3GPP), 4 2019. Version 15.5.0. [5] 3GPP. NR; Physical channels and modulation. Technical Specification (TS) 38.211, 3rd Generation Partnership Project (3GPP), 03 2019. Version 15.5.0. [6] 3GPP. Nr; radio resource control (rrc); protocol specification. Technical Specification (TS) 38.331, 3rd Generation Partnership Project (3GPP), 4 2019. Version 15.5.1. [7] 3GPP. Nr;medium access control (mac) protocol specification (release 15). Technical Specification (TS) 38.321, 3rd Generation Partnership Project (3GPP), 4 2019. Version 15.5.0. [8] 3GPP. Study on User Equipment (UE) power saving in NR. Technical report (TR) 38.840, 3rd Generation Partnership Project (3GPP), 06 2019. Version 16.0.0. [9] A. Awada and D. S. Michalopoulos and A. Ali. An improved method for ondemand system information broadcast in 5G networks. In 2017 IEEE Conference on Standards for Communications and Networking (CSCN), pages 18–23, Sept 2017. [10] M. Agiwal, A. Roy, and N. Saxena. Next generation 5g wireless networks: A comprehensive survey. IEEE Communications Surveys Tutorials, 18(3):1617–1655, thirdquarter 2016. [11] M. Giordani, M. Mezzavilla, and M. Zorzi. Initial access in 5g mmwave cellular networks. IEEE Communications Magazine, 54(11):40–47, November 2016. [12] M. A. Ingale and A. Agiwal. On demand system information delivery for 5G wireless system. In GLOBECOM 2017 2017 IEEE Global Communications Conference, pages 1–6, Dec 2017. [13] C. Jeong, J. Park, and H. Yu. Random access in millimeterwave beamforming cellular networks: issues and approaches. IEEE Communications Magazine, 53(1):180–185, January 2015. [14] F. Khan, Z. Pi, and S. Rajagopal. Millimeterwave mobile broadband with large scale spatial processing for 5g mobile communication. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1517– 1523, Oct 2012. [15] M. Koseoglu. Lower bounds on the LTEA average random access delay under massive M2M arrivals. IEEE Transactions on Communications, 64(5):2104–2115, May 2016. [16] S. Lien, S. Shieh, Y. Huang, B. Su, Y. Hsu, and H. Wei. 5g new radio: Waveform, frame structure, multiple access, and initial access. IEEE Communications Magazine, 55(6):64–71, June 2017. [17] G. Lin, S. Chang, and H. Wei. Estimation and adaptation for bursty LTE random access. IEEE Transactions on Vehicular Technology, 65(4):2560–2577, April 2016. [18] H. ShokriGhadikolaei, C. Fischione, G. Fodor, P. Popovski, and M. Zorzi. Millimeter wave cellular networks: A mac layer perspective. IEEE Transactions on Communications, 63(10):3437–3458, Oct 2015. [19] R. R. Tyagi, F. Aurzada, K. Lee, and M. Reisslein. Connection Establishment in LTEA Networks: Justification of Poisson Process Modeling. IEEE Systems Journal, 11(4):2383–2394, Dec 2017.
|