(34.201.11.222) 您好!臺灣時間:2021/02/25 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃致家
研究生(外文):Zhi-Jia Huang
論文名稱:應用於第五代通訊系統之互補式金屬氧化物半導體功率放大器效率提升研究
論文名稱(外文):Research on the CMOS Power Amplifier with Enhanced Efficiency for 5G Communication System Applications
指導教授:林坤佑林坤佑引用關係
口試委員:王暉張鴻埜蔡政翰蔡作敏
口試日期:2019-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:161
中文關鍵詞:毫米波第五代通信系統AM-AMAM-PM連續性class F/F-1中性化技術共模振盪雙頻段功率放大器
DOI:10.6342/NTU201804103
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
毫米波中有數個頻帶範圍已被授權為第五代通信系統。為了達到Gb/s等級的數據傳輸速度,即便使用毫米波頻段,頻寬依然有限。為了在有限頻寬內達到高數據傳輸速率,調變技術將採用高階調變,因此設計功率放大器上需要改善振幅(AM-AM)及相位(AM-PM)失真等特性。此外,為使用多輸入多輸出(MIMO)技術來提升天線輻射的效率,系統上將有多組發射端及功率放大器,故功率放大器的效率也是重要的設計目標。
本論文將從傳統的Class-A/B/C放大器介紹到諧波控制放大器(Class F/F-1),最後為連續性諧波控制放大器(Continuous Class F/F-1)。內容會分別討論波形、最大輸出功率、效率及基頻和諧波阻抗。
接下來分別探討差動放大器在差模狀態的穩定度和共模情況下的穩定度。中性化電容技術可改善差模的穩定度,反之共模會使其劣化。因此利用在變壓器的閘極串聯電阻,達到共模穩定度的改善。章節最後舉例一個設計在28 GHz使用中性化電容技術的差動功率放大器發生共模振盪,利用雷射切割切除閘極旁路電容,所以閘極路徑變成串聯一大電阻,讓共模振盪得以解除。
為了得到寬頻的大訊號特性,電路使用連續性class-F架構。連續性class-F諧波調控輸出匹配電路以1:1變壓器和並聯一組串聯共振腔所組成,達到連續性class-F所需的輸出阻抗條件。此外,利用設計驅動級的偏壓使AM-PM與功率級反向,達到AM-PM補償效果。
最後介紹一個雙頻class-F功率放大器,覆蓋28 GHz和38 GHz頻段及擁有高效率。雙頻段class-F諧波調控輸出匹配電路以1:1變壓器、多諧振電路、被動元件和寄生元件所組成。將LC共振腔所需的電感替代成變壓器,使LC共振腔與變壓器結合達到最小的輸出匹配網路面積。
Several mm-Wave bands have been opened for 5G communication systems to achieve the Gb/s data transmission. Despite using the mm-Wave bands, the spectrum is still a limited resource. Therefore, to achieve high data rate in the limited bandwidth, high order modulation schemes are used, hence the AM-AM and AM-PM distortions need to be improved in the design of PA. Since the MIMO technology is used to enhance the efficiency of antenna radiation, the system would have many transmitters and PAs. Thus, the efficiency of PA is also an important design target.
In this thesis, the traditional class-A/B/C amplifiers, harmonic-controlled amplifiers (Class F/F-1) and continuous-mode harmonic-controlled amplifiers (Continuous Class F/F-1) are introduced. The waveforms, maximum output power, efficiency and the impedance of fundamental and other harmonic frequencies will be discussed.
The stability of differential amplifier is analyzed in differential and common modes, respectively. The stability of differential mode can be improved by the capacitor neutralization technique. However, the common-mode stability could be degraded due to neutralization capacitor. Using the series resistor in center tap of the gate transformer can decrease the common-mode gain and thus the common-mode stability can be improved without degrading the differential-mode performance. Finally, an example of 28 GHz differential power amplifier with capacitor neutralization technique is demonstrated. By using laser to cut the bypass capacitor of gate bias, the low-impedance at the center tap of the gate transformer becomes a high impedance due to the series resistor, the oscillation is thus removed.
In order to get the broadband power performance, the continuous class-F topology is used. The continuous class-F harmonic-tuned output matching network is composed of a 1:1 transformer and a parallel series resonator to achieve the impedance condition of continuous class F. Besides, the gate bias of driver stage is designed for the reverse AM-PM distortion to compensate the of AM-PM distortion of the power stage.
Finally, a dual-band class-F PA covering the 28/38 GHz bands is demonstrated with high efficiency. The dual-band class-F operation is obtained by dual-band class-F harmonic-tuned output matching network, which is composed of a 1:1 transformer, parallel multi-resonance networks, passive component, and parasitic components. The inductor of LC tank can be replaced by transformer to combine LC tank and transformer to minimum the area of output matching network.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xxi
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 2
1.2.1 28-GHz-Band Power Amplifier for 5G mm-Wave Communications 2
1.2.2 Broadband Power Amplifier for 5G mm-Wave Communications 5
1.3 Contribution 6
1.4 Thesis Organization 7
Chapter 2 Overview of the Reduced Conduction Angle Mode and the Harmonic-Controlled Mode Power Amplifier [25], [27]-[30] 9
2.1 Introduction 9
2.2 Reduced conduction angle Mode (Class A/AB/B/C) 10
2.3 Class-F/F-1 Modes 13
2.3.1 Class-F PA 13
2.3.2 Inverse Class-F PA 16
2.4 Continuous Mode 17
2.4.1 Class-J PA 17
2.4.2 Continuous Class-F PA 19
2.4.3 Continuous Inverse Class-F PA 22
2.5 Summary 24
Chapter 3 The Stability of Differential Power Amplifier 25
3.1 Introduction 25
3.2 The Stability of Differential Mode 26
3.3 The Stability of Common Mode 28
3.4 28 GHz Transformer-Based Differential Power Amplifier with Capacitive Neutralization Technique 37
3.5 Summary 47
Chapter 4 Design of a 28 GHz Continuous Class-F Power Amplifier in 90-nm CMOS 48
4.1 Introduction 48
4.2 Design Methodology 49
4.2.1 Bias and Size Selection of Power Stage 49
4.2.2 Transistor Drain-Source Parasitic Capacitance Extraction 53
4.2.3 Continuous Class-F Harmonic-tuned Output Matching Network 56
4.2.4 Driver Stage and Matching Network 63
4.2.5 Circuit Schematic and Simulation Results 69
4.3 Experimental Results and Discussions 79
4.3.1 Common Mode Oscillation 79
4.3.2 Measurement Results of Revised Continuous Class-F PA 88
4.4 Summary 103
Chapter 5 A 28/38 GHz 5G Millimeter-Wave Dual-Band Class-F Power Amplifier in 90-nm CMOS 107
5.1 Introduction 107
5.2 Design Methodology 108
5.2.1 Bias and Size Selection of Power Stage 108
5.2.2 Dual Band Class-F Harmonic-tuned Output Matching Network 111
5.2.3 Driver Stage and Dual-band Matching Network 119
5.2.4 Circuit Schematic and Simulation Results 126
5.3 Experimental Results 138
5.4 Summary 152
Chapter 6 Conclusion 156
REFERENCE 158
[1]Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wireless Netw., vol. 21, no. 8, pp. 2657-2676, Nov. 2015.
[2]S. Hu, F. Wang, and H. Wang, “A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2017, pp. 32-34.
[3]M. Vigilante and P. Reynaert, “A 29-to-57GHz AM-PM compensated class-AB power amplifier for 5G phased arrays in 0.9V 28nm bulk CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., June 2017, pp. 116-119.
[4]A. Chakrabarti and H. Kirsgnaswamy, “High-power high-efficiency class-E-like stacked mmWave PAs in SOI and bulk CMOS: theory and implementation,” IEEE Tran. Microw. Theory Tech., vol. 62, no. 8, pp. 1686-1704, Aug. 2014.
[5]B. Park, S. Jin, D. Jeong, J. Kim, Y. Cho, K. Moon, and B. Kim, “Highly linear mm-Wave CMOS power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4535-4544, May 2016.
[6]S. Shakib, H.-C. Park, J. Dunworth, V. Aparin, and K. Entesari, “A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3021-3036, Dec. 2016.
[7]S. Shakib, M. Elkholy, J. Dunworth, V. Aparin, and K. Entesari, “A wideband 28GHz power amplifier supporting 8×100MHz carrier aggregation for 5G in 40nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2017, pp. 44-46.
[8]Y. Zhang and P. Reynaert, “A high-efficiency linear power amplifier for 28 GHz mobile communications in 40nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., June 2017, pp. 33-36.
[9]D. Jeong, K. Moon, S. Lee, B. Park, J. Kim, J. Son, and B. Kim, “Linear CMOS power amplifier at Ka-band with ultra-wide video bandwidth,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., June 2017, pp. 220-223.
[10]R. Ciocoveanu, R. Weigel, A. Hagelauer, A. Geiselbrechtinger, and V. Issakov, “5G mm-wave stacked class AB power amplifier in 45 nm PD-SOI CMOS,” in Proc. Asia-Pacific Microw. Conf., Nov. 2018, pp. 147-149.
[11]K.-C. Chiang, T.-C. Tsai, I. Hunag, J.-H. Tsai, and T.-W. Hunag, “A 27-GHz transformer based power amplifier with 513.8-mW/mm2 output power density and 40.7% peak PAE in 1-V 28-nm CMOS,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., June 2019.
[12]A. Srkar and B. A. Floyd, “A 28-GHz harmonic-tuned power amplifier in 130-nm SiGe BiCMOS,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 522-535, Feb. 2017.
[13]S. Ali, P. Agarwal, J. Baylon, L. Renaud, and D. Heo, “A 28GHz 41%-PAE linear CMOS power amplifier sing a transformer-based AM-PM distortion-correction technique for 5G phased arrays,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2018, pp. 406-408.
[14]T.-W. Li, M.-Y. Huang, and H. Wang, “A continuous-mode harmonically tuned 19-to-29.5GHz ultra-linear PA supporting 18Gb/s at 18.4% modulation PAE and 43.5% peak PAE,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2018, pp. 410-411.
[15]S. N. Ali, P. Agarwal, S. Gopal, S. Mirabbasi and D. Heo, “A 25-35 GHz neutralized continuous class-F CMOS power amplifier for 5G mobile communications achieving 26% modulation PAE at 1.5 Gb/s and 46.4% peak PAE,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 2, pp. 834-847, Feb. 2018.
[16]M. Vigilante, E. McCune, and P. Reynaert, “To EVM or two EVMs?:An answer to the question,” IEEE Solid-State Circuits Mag., vol. 9, no. 3, pp. 36-39, Aug. 2017.
[17]J. Kim, H. Dabag, P. Asbeck, and J. F. Buckwalter, “Q-band and W-band power amplifiers in 45-nm CMOS SOI,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1870-1877, June 2012.
[18]S. Y. Mortazavi and K.-J. Koh, “A 38 GHz inverse class-F power amplifier with 38.5% peak PAE, 16.5 dB gain, and 50 mW Psat in 0.13-µm SiGe BiCMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., May 2015, pp. 211-214.
[19]T.-W. Li, and H. Wang, “A continuous-mode 23.5-41GHz hybrid class-F/F-1 power amplifier with 46% peak PAE for 5G massive MIMO application,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., June 2018, pp. 220-223.
[20]H. Jia, C. C. Prawoto, B. Chi, Z. Wang, and C. P. Yue, “A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[21]M. Hayati, A. Sheikhi, and A. Grebennikov, “Class-F power amplifier with high power added efficiency using bowtie-shaped harmonic control circuit,” IEEE Microw. Compon. Lett., vol. 25, no. 2, pp. 133-135, Feb. 2015.
[22]S. Y. Mortazavi, and K.-J. Koh, “A 43% PAE inverse class-F power amplifier at 39-42 GHz with a λ/4-transformer based harmonic filter in 0.13-μm SiGe BiCMOS,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., May 2016.
[23]H. Hunag, B. Zhang, C. Yu, J. Gao, Y. Wu and Y. Liu, “Design of multioctave bandwidth power amplifier based in resistive second-harmonic impedance continuous class-F,” IEEE Microw. Compon. Lett., vol. 27, no. 9, pp. 830-832, Sept. 2017.
[24]M. Yang, J. Xia, Y. Guo, and A. Zhu, “Highly efficient broadband continuous inverse class-F power amplifier design using modified elliptic low-pass filitering matching network,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 5, pp. 1515-1525, May 2016.
[25]S. C. Cripps, RF Power Amplifiers for Wireless Communications. Norwood, MA, USA: Artech House, 2006.
[26]W. Chen, K. Rawat, and F. M. Ghannouchi, Multiband RF Circuits and Techniques for Wireless Transmitters. Berlin: Springer-Verlag, 2016.
[27]S. Y. Mortazavi, and K.-J. Koh, “Integrated inverse class-F silicon power amplifiers for high power efficiency at microwave and mm-Wave,” IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2420-2434, Oct. 2016.
[28]S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, “On the continuity of high efficiency modes in linear RF power amplifiers,” IEEE Microw. Compon. Lett., vol. 19, no. 10, pp. 665-667, Sept. 2009.
[29]V. Carrubba, A. L. Clarke, M. Akmal, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, “On the extension of the continuous class-F mode power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1294-1303, May 2011.
[30]V. Carrubba, A. L. Clarke, M. Akmal, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, “The continuous inverse class-F mode with resistive second-harmonic impedance,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1928-1936, Jun. 2012.
[31]W. L. Chan and J. R. Long, “A 58-65 GHz neutralization CMOS power amplifier with PAE above 10% at 1-V supply”, IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554-564, Mar. 2010.
[32]G. Gonzalez, Microwave Transistor Amplifier Analysis and Design, 2nd, Taiwan: Person Education, 2008.
[33]N. Deferm, and P. Reynaert, “Differential and common mode stability analysis of differential mm-Wave CMOS amplifier with capacitive neutralization,” Analog Integr. Circ. Sig. Process, vol. 80, no. 1, pp. 1-12, July 2014.
[34]S. Ali, P. Agarwal, S. Mirabbasi, and D. Heo, “A 42-46.4% PAE continuous class-F power amplifier with Cgd neutralization at 26-34 GHz in 65 nm CMOS for 5G applications,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., June 2017, pp. 212-215.
[35]S. Y. Mortazavi, and K.-J. Koh, “Integrated inverse class-F silicon power amplifiers for high power efficiency at microwave and mm-wave,” IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2420-2434, Oct. 2016.
[36]G. Nikandish, E. Babakrpur, and A. Medi, “A harmonic termination technique for single- and multi-band high-efficiency class-F MMIC power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 5, pp. 1212-1220, May 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔