|
[1] Y. I. Abramovich, N. K. Spencer, and A. Y. Gorokhov. Positive-definite Toeplitz completion in doa estimation for nonuniform linear antenna arrays. ii. partially augmentable arrays. IEEE Transactions on Signal Processing, 47(6):1502–1521, 1999. [2] M. Babtlett. Smoothing periodograms from time-series with continuous spectra. Nature, 161(4096):686, 1948. [3] S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in Machine Learning, 8(3-4):231–357, 2015. [4] E. J. Candes and Y. Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):925–936, 2010. [5] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of Computational mathematics, 9(6):717, 2009. [6] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8):1408–1418, 1969. [7] W. Chen, K. M. Wong, and J. P. Reilly. Detection of the number of signals: A predicted eigen-threshold approach. IEEE Transactions on Signal Processing, 39(5):1088–1098, 1991. [8] M. Fazel. Matrix rank minimization with applications. PhD thesis, PhD thesis, Stanford University, 2002. [9] M. Haardt and J. A. Nossek. Unitary esprit: How to obtain increased estimation accuracy with a reduced computational burden. IEEE transactions on signal processing, 43(5):1232–1242, 1995. [10] Z. He, A. Cichocki, S. Xie, and K. Choi. Detecting the number of clusters in nway probabilistic clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(11):2006–2021, 2010. [11] R. D. Hill, R. G. Bates, and S. R. Waters. On centrohermitian matrices. SIAM Journal on Matrix Analysis and Applications, 11(1):128–133, 1990. [12] K.-C. Huarng and C.-C. Yeh. A unitary transformation method for angle-of-arrival estimation. IEEE Transactions on Signal Processing, 39(4):975–977, 1991. [13] H. Krim and M. Viberg. Two decades of llrray signal processing research. IEEE signal processing magazine, 1996. [14] A. Lee. Centrohermitian and skew-centrohermitian matrices. Linear algebra and its applications, 29:205–210, 1980. [15] D. A. Linebarger, R. D. DeGroat, and E. M. Dowling. Efficient direction-finding methods employing forward/backward averaging. IEEE Transactions on Signal Processing, 42(8):2136–2145, 1994. [16] C.-L. Liu and P. Vaidyanathan. Remarks on the spatial smoothing step in coarray music. IEEE Signal Processing Letters, 22(9):1438–1442, 2015. [17] C.-L. Liu and P. Vaidyanathan. Cramér–rao bounds for coprime and other sparse arrays, which find more sources than sensors. Digital Signal Processing, 61:43–61, 2017. [18] C.-L. Liu, P. Vaidyanathan, and P. Pal. Coprime coarray interpolation for doa estimation via nuclear norm minimization. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pages 2639–2642. IEEE, 2016. [19] P. Pal and P. Vaidyanathan. Nested arrays: A novel approach to array processing withenhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8):4167–4181, 2010. [20] P. Pal and P. P. Vaidyanathan. Coprime sampling and the music algorithm. In 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pages 289–294. IEEE, 2011. [21] M. Pesavento, A. B. Gershman, and M. Haardt. Unitary root-music with a realvalued eigendecomposition: A theoretical and experimental performance study. IEEE transactions on signal processing, 48(5):1306–1314, 2000. [22] H. Qiao and P. Pal. Unified analysis of co-array interpolation for direction-of-arrival estimation. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3056–3060. IEEE, 2017. [23] S. Qin, Y. D. Zhang, and M. G. Amin. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Transactions on Signal Processing, 63(6):1377–1390, 2015. [24] R. Roy and T. Kailath. Esprit-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on acoustics, speech, and signal processing, 37(7):984–995, 1989. [25] R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE transactions on antennas and propagation, 34(3):276–280, 1986. [26] T. E. Tuncer and B. Friedlander. Classical and modern direction-of-arrival estimation. Academic Press, 2009. [27] P. P. Vaidyanathan and P. Pal. Sparse sensing with co-prime samplers and arrays. IEEE Transactions on Signal Processing, 59(2):573–586, 2010. [28] H. L. Van Trees. Optimum array processing: Part IV of detection, estimation, and modulation theory. John Wiley & Sons, 2004. [29] M. Wax and T. Kailath. Detection of signals by information theoretic criteria. IEEE Transactions on acoustics, speech, and signal processing, 33(2):387–392, 1985. [30] Y. D. Zhang, M. G. Amin, and B. Himed. Sparsity-based doa estimation using coprime arrays. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3967–3971. IEEE, 2013. [31] C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang. Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Transactions on Signal Processing, 66(22):5956–5971, 2018. [32] Y. Zhu, X. Wang, L. Wan, M. Huang, W. Feng, and J. Wang. Unitary low-rank matrix decomposition for doa estimation in nonuniform noise. In 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), pages 1–4. IEEE, 2018.
|