(3.231.166.56) 您好!臺灣時間:2021/03/08 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊智凱
研究生(外文):Chih-Kai Yang
論文名稱:可提供高頻譜緊密度與最佳通道估測性能之正交分頻多工領航信號的設計
論文名稱(外文):Pilot Sequence Design for Spectral Compactness and Channel Estimation in OFDM
指導教授:鐘嘉德鐘嘉德引用關係陳維昌
指導教授(外文):Char-Dir ChungWei-Chang Chen
口試委員:林茂昭王晉良李穎
口試委員(外文):Mao-Chao LinChin-Liang WangYing Li
口試日期:2019-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:69
中文關鍵詞:正交分頻多工領航信號通道估測旁波抑制頻譜緊密度
DOI:10.6342/NTU201900957
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現行標準中的領航信號有著較緩慢衰落的頻譜旁波衰落速度,進而使得鄰近的通道產生干擾,對此有些文章提出相對應的解決方法,來讓領航信號具有快速旁波衰減的特性,然而這些方法會受限於一些條件而使得應用範圍不廣泛,像是旁波衰減速度會受限於領航序列長度的2的因數個數,又或者是會受限於各種的系統參數。為了克服這項困難,在此篇文章中提出兩個新的設計方法,能將過去適用的情況被更加的擴展,同時又能確保兩種新方法所建構出來的領航信號,具備高頻譜緊密度與最佳通道估測的能力。
The pilot waveform that can suppress power spectral sidelobes while achieving accurate channel estimation is desirable for orthogonal frequency division multiplexing systems and standards. However, the conventional pilot waveforms either suffer large power spectral sidelobes or can suppress sidelobe power effectively only when the number of pilot subcarriers has a large positive integer power of two as a factor. To overcome the problem, two design procedures are proposed in the paper to construct spectrally compact pilot waveforms with optimal channel estimation even when the number of pilot subcarriers does not have a large positive integer power of two as a factor.
論文口試委員申請書
誌謝
中文摘要 i
英文摘要 ii
圖目錄 v
表目錄 vi
符號 vii
第一章 緒論 1
第1.1節 正交分頻多工簡介 1
第1.2節 頻域旁頻抑制技術簡介 2
第1.3節 通道估測簡介 4
第1.4節 掏頻寬效益前導與領航信號簡介 6
第1.5節 論文動機 7
第二章 信號模型與快速旁波衰減 9
第2.1節 信號模型 9
第2.2節 功率譜密度 11
第2.3節 快速旁波衰減條件 12
第2.4節 頻譜主導項次 15
第三章 高頻譜緊密度領航信號設計 17
第3.1節 概述 17
第3.2節 Generalized Cascading Construction 18
第3.2.1節 在Condition A下的設計步驟 18
第3.2.2節 在Condition B下的設計步驟 20
第3.3節 Interleaving Construction 21
第3.3.1節 在Condition A下的設計步驟 22
第3.3.2節 在Condition B下的設計步驟 22
第3.4節 高頻譜緊密度領航序列範例 23
第3.5節 快速旁波衰落之比較 25
第3.6節 多階旁波衰落之條件 29
第四章 性能結果 33
第4.1節 頻譜緊密度 33
第4.2節 峰均功率比 33
第4.3節 模擬結果 34
第五章 結論 43
參考文獻 44
附錄 49
[1] ETSI, Digital Video Broadcasting (DVB-T): Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television, ETS 300 744, Dec. 2001.
[2] IEEE 802.11-2012, IEEE Standard for Information Technology- Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Mar. 2012.
[3] IEEE 802.16-2009, IEEE Standard for Local and Metropolitan Area Network, Part 16: Air Interface for Broadband Wireless Access Systems, May 2009.
[4] C. R. Stevenson, G. Chouinard, Z. Lei, W. Hu and S. J. Shellhammer, “IEEE 802.22: The first cognitive radio wireless regional area network standard,” IEEE Commun. Mag., vol. 47, no. 1, pp.130-138, Jan. 2009.
[5] IEEE 802.22-2011, Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands, Jul. 2011.
[6] 3GPP TS 36.211 V12.3.0, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Channels and Modulation, Oct. 2014.
[7] 3GPP TS 38.211 V15.4.0, NR; Physical channels and modulation, Jan. 2019.
[8] S. H. Song, G. L. Chen, and K. B. Letaief, “Localized or interleaved? A tradeoff between diversity and CFO interference in multipath channels,” IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 2829-2834, Sep. 2011.
[9] H. Yin and S. Alamouti, “OFDMA: A Broadband Wireless Access Technology,” in Proc. IEEE Sarnoff Symposium, Princeton, NJ, Mar. 2006, pp. 1-4.
[10] T.-D. Chiueh and P.-Y. Tsai, Baseband Receiver Design for Wireless MIMO-OFDM Communications, 2nd ed., Wiley, Apr. 2012.
[11] B. Saltzberg, “Performance of an Efficient Parallel Data Transmission System,” IEEE Trans. Commun. Technol., vol. 15, no. 6, pp. 805-811, Dec. 1967.
[12] D. Katselis, E. Kofidis, A. Rontogiannis, and S. Theodoridis, “Preamble-Based Channel Estimation for CP-OFDM and OFDM/OQAM Systems: A Comparative Study,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2911-2916, May 2010.
[13] M. Faulkner, “The effect of filtering on the performance of OFDM systems,” IEEE Trans. Veh. Technol., vol. 49, no. 5, pp. 1877–1884, Sep. 2000.
[14] J. Luo, W. Keusgen, and A. Kortke, “Optimization of Time Domain Windowing and Guardband Size for Cellular OFDM Systems,” in Proc. IEEE Veh. Technol. Conf., Calgary, BC, Sep. 2008, pp. 1-5.
[15] A. Sahin, and H. Arslan, “Edge Windowing for OFDM Based Systems,” IEEE Commun. Lett., vol. 15, no. 11, pp. 1208-1211, Nov. 2011.
[16] T. Weiss, J. Hillenbrand, A. Krohn, and F. Jondral, “Mutual interference in OFDM-based spectrum pooling systems,” in Proc. IEEE Veh. Technol. Conf., vol. 4, pp. 1873-1877, May 2004.
[17] L. Wei, and C. Schlegel, “Synchronization requirements for multi-user OFDM on satellite mobile and two-path Rayleigh fading channels,” IEEE Trans. Commun., vol. 43, nos. 2–4, pp. 887–895, Feb./Mar./Apr. 1995.
[18] S. Brandes, I. Cosovic, and M. Schnell, “Reduction of out-of-band radiation in OFDM based overlay systems,” in Proc. IEEE Int. Symp. Dynamic Spectrum Access Networks., Baltimore, MD, USA, 2005, pp. 662-665.
[19] S. Brandes, I. Cosovic, and M. Schnell, “Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers,” IEEE Commun. Lett., vol. 10, no. 6, pp. 420–422, Jun. 2006.
[20] J. van de Beek, and F. Berggren, “Out-of-band power suppression in OFDM,” IEEE Commun. Lett., vol. 12, no. 9, pp. 609–611, Sep. 2008.
[21] A. Selim, I. Macaluso, and L. Doyle, “Efficient sidelobe suppression for OFDM systems using advanced cancellation carriers,” in Proc. IEEE Int. Conf. Commun., Budapest, 2013, pp. 4687-4692.
[22] J. van de Beek, and F. Berggren, “N-continuous OFDM,” IEEE Commun. Lett., vol. 13, no. 1, pp. 1-3, Jan. 2009.
[23] A. Tom, A. Şahin, and H. Arslan, “Mask compliant precoder for OFDM spectrum shaping,” IEEE Commun. Lett., vol. 17, no. 3, pp. 447-450, Mar. 2013.
[24] I. Cosovic, S. Brandes, and M. Schnell, “Subcarrier weighting: A method for sidelobe suppression in OFDM systems,” IEEE Commun. Lett., vol. 10, pp. 444-446, Jun. 2006.
[25] J. Zhang, X. Huang, A. Cantoni, and Y. J. Guo, “Sidelobe suppression with orthogonal projection for multicarrier systems,” IEEE Trans. Commun., vol. 60, no. 2, pp. 589-599, Feb. 2012.
[26] M. Ma, X. Huang, B. Jiao, and Y. J. Guo, “Optimal orthogonal precoding for power leakage suppression in DFT-based systems,” IEEE Trans. Commun., vol. 59, no. 3, pp. 844–853, Mar. 2011.

[27] W.-C. Chen and C.-D. Chung, “Spectral precoding for cyclic-prefixed OFDMA with interleaved subcarrier allocation,” IEEE Trans. Commun., vol. 61, no. 11, pp. 4616-4629, Nov. 2013.
[28] H.-M. Chen, W.-C. Chen and C.-D. Chung, “Spectrally precoded OFDM and OFDMA with cyclic prefix and unconstrained guard ratios,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp. 1416-1427, May 2011.
[29] C.-D. Chung, “Spectrally precoded OFDM,” IEEE Trans. Commun., vol. 54, no. 12, pp. 2173-2185, Dec. 2006.
[30] C.-D. Chung, “Spectral precoding for rectangularly pulsed OFDM,” IEEE Trans. Commun., vol. 56, no. 9, pp. 1498-1510, Sep. 2008.
[31] C.-D. Chung, “Correlatively coded OFDM,” IEEE Trans. Wireless Commun., vol. 5, no. 8, pp. 2044-2049, Aug. 2006.
[32] J. Choi, J. Lee, Q. Zhao and H. Lou, “Joint ML estimation of frame timing and carrier frequency offset for OFDM systems employing time-domain repeated preamble,” IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 311-317, Jan. 2010.
[33] D. Katselis, “Some preamble design aspects in CP-OFDM systems,” IEEE Commun. Lett., vol. 16, no. 3, pp. 356-359, Mar. 2012.
[34] B. Xie, W. Qiu and H. Minn, “Exact signal model and new carrier frequency offset compensation scheme for OFDM,” IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 550-555, Feb. 2012.
[35] Z. Gao, C. Zhang and Z. Wang, “Robust preamble design for synchronization, signaling transmission, and channel estimation,” IEEE Trans. Broadcast., vol. 61, no. 1, pp. 98-104, Mar. 2015.
[36] M. Ghogho, A. Swami and P. Ciblat, “Training Design for CFO Estimation in OFDM Over Correlated Multipath Fading Channels,” in Proc. IEEE Global Telecommun. Conf., Washington, DC, 2007, pp. 2821-2825.
[37] M.-H. Hsieh and C.-H. Wei„ “Channel estimation for OFDM systems based on combtype pilot arrangement in frequency selective fading channels,” IEEE Trans. Broadcast., vol. 44, no. 1, pp. 217-225, Feb. 1998.
[38] S. Coleri, M. Ergen, A Puri and A. Bahai, “Channel estimation techniques based on pilot arrangement in OFDM systems,” IEEE Trans. Broadcast., vol. 48, no. 3, pp. 223-229, Sep. 2002.
[39] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDMsystem,” IEEE Trans. Consum. Electron., vol. 44, no. 3, pp. 1122-1128, Aug. 1998.
[40] M. Morelli and U. Mengali, “A comparison of pilot-aided channel estimation methods for OFDM systems,” IEEE Trans. Signal Process., vol. 49, no. 12, pp. 3065-3073, Dec. 2001.
[41] H. Bolcskei, “Blind estimation of symbol timing and carrier frequency offset in wireless OFDM systems,” IEEE Trans. Commun., vol. 48, no.6, pp. 988-999, Jun. 2001.
[42] X. Ma , C. Tepedelenlioglu , G. B. Giannakis and S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: Identifiability, algorithms and performance” IEEE J. Select. Areas Commun., vol. 19, no. 12, pp. 2504-2515, Dec. 2001.
[43] A. G. Orozco-Lugo, M. M. Lara and D. C. McLernon, “Channel estimation using implicit training,” IEEE Trans. Signal Process., vol. 52, no. 1, pp. 240-254, Jan. 2004.
[44] N. Lashkarian and S. Kiaei, “Class of cyclic-based estimators for frequency-offset estimation of OFDM systems,” IEEE Trans. Commun., vol. 48, no. 12, pp. 1590-1598, Dec. 2000.
[45] J.-J. van de Beek, M. Sandell, and P. O. Börjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process., vol. 45, no. 7, pp. 1800-1805, July 1997.
[46] A. P. Petropulu, R. Zhang, and R. Lin, “Blind OFDM channel estimation through simple linear precoding,” IEEE Trans. Wireless Commun., vol. 3, no. 2, pp. 647-655, Mar. 2004.
[47] C. Li and S. Roy, “Subspace-based blind channel estimation for OFDM by exploiting virtual carriers,” IEEE Trans. Wireless Commun., vol. 2, no.1, pp. 141-150, Jan. 2003.
[48] S. Roy and C. Li, “A subspace blind channel estimation method for OFDM systems without cyclic prefix,” IEEE Trans. Wireless Commun., vol. 1, pp. 572-579, Oct. 2002.
[49] R. Lin and A. Petropulu, “Linear precoding assisted blind channel estimation for OFDM systems,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 983-995, May 2005.
[50] C.-C. Lin, W.-C. Chen, and C.-D. Chung, “Near-CAZAC preamble sequence for initial synchronization in spectrally compact OFDM,” in Proc. IEEE Veh. Technol. Conf., Chicago, Aug. 2018, pp. 1-6.
[51] C.-D. Chung and W.-C. Chen, “Preamble sequence design for spectral compactness and initial synchronization in OFDM,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1428-1443, Feb. 2018.
[52] W.-C. Chen and C.-D. Chung, “Spectrally efficient OFDM pilot waveform for channel estimation,” IEEE Trans. Commun., vol. 65, no. 1, pp. 387-402, Jan. 2017.
[53] J.-W. Choi and Y.-H. Lee, “Optimum pilot pattern for channel estimation in OFDM systems,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2083-2088, Sep. 2005.
[54] P.-T. Chi. (2017). Spectrally efficient pilot waveform design for channel estimation in OFDM and SC-FDMA systems. Unpublished master’s thesis, National Taiwan University, Taipei, Taiwan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔