跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/11 06:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾子軒
研究生(外文):Tzu-Shiuan Tseng
論文名稱:只使用一階藕合的小型偶極天線陣列的互藕補償方法
論文名稱(外文):Mutual Coupling Compensation for Small Dipole Arrays Using Only First Order Coupling
指導教授:盧信嘉
指導教授(外文):Hsin-Chia Lu
口試委員:周錫增陳晏笙曾昭雄
口試委員(外文):Hsi-Tseng ChouYen-Sheng ChenChao-Hsiung Tseng
口試日期:2019-01-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:134
中文關鍵詞:相位天線陣列互藕單元激勵場型波束掃描互藕補償
DOI:10.6342/NTU201900512
相關次數:
  • 被引用被引用:1
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出只採用相位天線陣列單元間的一階藕合常數來作為補償小型相位天線陣列互藕的方法。首先提出一個簡化且直觀的藕合機制模型,基於這個模型定出一階藕合常數,並提出使用單一量測點求出一階藕合常數的方法,再透過藕合機制模型解釋如何用一階藕合常數如同傳統方法,例如:傅立葉分解法,點匹配法等一般找到互藕補償矩陣,進而補償相位天線陣列的互藕。不是每個情況都適用一階藕合常數進行補償,本論文也會指出哪些情況能夠合理忽略高階藕合常數。
為了評估藕合補償的效果時,避免其他非理想效應出現,例如貼片天線的邊緣繞射(edge diffraction),天線單元輻射場型不是全向性的(omnidirectional)等因素參雜其中,將情境複雜化,論文中採用半波長的偶極天線作為天線單元。
對小型的一維偶極天線陣列,不僅使用本論文提出的一階藕合常數補償法,也同時使用傅立葉分解法,點匹配法一起比較。除了利用補償前後的單元激勵場型(active element pattern)評估補償效果,也考慮了相位陣列理論的(1)改變相位-波束掃描(beam scanning)、(2)改變振幅- 卻比雪夫分布(Chebyschev distribution)等補償前後的差異。二維偶極天線陣列只使用一階藕合常數補償法。以上的情況,一階藕合常數補償法都得到良好的補償效果。

本論文使用了ANSYS HFSS進行模擬和MATLAB進行計算驗證。


關鍵字:相位天線陣列、互藕、單元激勵場型、波束掃描、互藕補償
Based on first order coupling between element within the phased array, a technique for mutual coupling compensation in small phased antenna array is presented in this thesis.
First of all, a simple but intuitive coupling mechanism model is proposed. On the basis of this model, first order coupling coefficient is defined and also a method by using only one observation point to determine first order coupling coefficient is given. From the point of view of the model, it can be explained how a compensation matrix which is used in compensation of mutual coupling in phased array can be achieved by means of first order coupling coefficient, as well as that by traditional methods such as Fourier decomposition method and point matching method. Not all cases of coupling can be compensated by first order coupling method. The cases that higher order coupling coefficient can be reasonably neglected in compensation matrix are also indicated.
To evaluate the performance of the compensation of coupling, avoiding other non-ideal effect, for example, edge diffraction in patch antenna, non-omnidirectional pattern, etc included in the system to make the situation more complicated, we use half -wave dipole as radiating element in an array.
In the case of small linear dipole antenna array, we compare the performance of the first order coupling method, Fourier decomposition method and point matching method. For small planar dipole antenna array, only first order coupling coefficient method has been evaluated. In addition to using active element pattern with and without compensation to evaluate the performance of compensation, we also compare the compensated and uncompensated patterns in the following two cases: (1) beam steering by phase difference between elements and (2) element amplitude by Chebyschev distribution. In all the above cases, first order coupling method performs rather good.
In this thesis, we use ANSYS HFSS to do EM simulations and MATLAB to do calculations and verifications.











Keywords: phased array, mutual coupling, active element pattern, beam scanning, mutual coupling compensation.
誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiv
Chapter 1 動機與論文簡介 1
1.1 研究動機 1
1.2 本論文之貢獻 3
1.3 各章節簡介 3
Chapter 2 相位天線陣列和半波長偶極天線理論 4
2.1 天線陣列的陣列因子 4
2.1.1 線性陣列的陣列因子 4
2.1.2 平面陣列的陣列因子 9
2.2 陣列因子的應用 12
2.2.1 控制相位-天線陣列的波束掃描(beam scanning) 12
2.2.2 控制振幅-天線陣列的卻比雪夫分布(Chebyshev distribution) 20
2.3 半波長偶極天線的理論 25
Chapter 3 偶極天線陣列的互藕與補償 36
3.1 天線陣列的單元激勵場型和互藕 36
3.2 天線陣列的藕合機制 41
3.2.1 藕合矩陣與補償矩陣 41
3.2.2 藕合機制的討論和一階藕合常數 45
3.3 決定藕合矩陣和補償矩陣的方法 51
3.3.1 傅立葉分解 51
3.3.2 S參數法 53
3.3.3 N點匹配法 56
3.3.4 一階藕合常數和取單一觀察點求得一階藕合常數的方法 57
3.4 一階藕合常數補償適用的環境 61
Chapter 4 模擬與結果驗證 67
4.1 小型線性E平面藕合偶極天線陣列 67
4.1.1 線性1×2陣列的單元激勵場型,藕合矩陣和補償矩陣 67
4.1.2 線性1×3陣列的單元激勵場型,藕合矩陣和補償矩陣 72
4.1.3 線性1×3陣列的波束掃描 76
4.1.4 線性1×8陣列的單元激勵場型,藕合矩陣和補償矩陣 81
4.1.5 線性1×8陣列的波束掃描和卻比雪夫分布 86
4.2 小型線性H平面藕合偶極天線陣列 93
4.2.1 線性1×2陣列的單元激勵場型和一階藕合法的補償矩陣 94
4.2.2 線性1×8陣列的單元激勵場型,藕合矩陣和補償矩陣 96
4.2.3 線性1×8陣列的的波束掃描和卻比雪夫分布 98
4.3 小型平面偶極天線陣列 104
4.3.1 平面2×2陣列的單元激勵場型和一階藕合法的補償矩陣 104
4.3.2 使用一階藕合法在2×2平面陣列的波束掃描 107
4.4 不同方法的效果比較 112
Chapter 5 結論與展望 117
5.1 結論 117
5.2 未來展望 118
5.3 問題討論 120
參考文獻 133
[1]V. A. Rabinovich, Nikolai, "Antenna Arrays and Automotive Applications." Springer, 2013.
[2]A. Alexiou and M. Haardt, "Smart antenna technologies for future wireless systems: trends and challenges," IEEE Communications Magazine, vol. 42, no. 9, pp. 90-97, September 2004.
[3]S. Bellofiore, J. Foutz, C. A. Balanis, and A. S. Spanias, "Smart-antenna system for mobile communication networks .Part2. Beamforming and network throughput," IEEE Antennas and Propagation Magazine, vol. 44, no. 4, pp. 106-114, August 2002.
[4]S. Bellofiore, C. A. Balanis, J. Foutz, and A. S. Spanias, "Smart-antenna systems for mobile communication networks. Part 1. Overview and antenna design," IEEE Antennas and Propagation Magazine, vol. 44, no. 3, pp. 145-154, June 2002.
[5]D. M. Pozar, "The active element pattern," IEEE Transactions on Antennas and Propagation, vol. 42, no. 8, pp. 1176-1178, August 1994.
[6]D. F. Kelley, "Relationships between active element patterns and mutual impedance matrices in phased array antennas," IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, USA, June 2002, vol.1, pp. 524-527.
[7]D. F. Kelley, "Embedded element patterns and mutual impedance matrices in the terminated phased array environment," 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, December 2005, vol. 3A , pp. 659-662.
[8]C. L. Dolph, "A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level," Proceedings of the IRE, vol. 34, no. 6, pp. 335-348, June 1946.
[9]A. Safaai-Jazi, "A new formulation for the design of Chebyshev arrays," IEEE Transactions on Antennas and Propagation, vol. 42, no. 3, pp. 439-443, March 1994.
[10]C. A. Balanis, "Antenna Theory: Analysis and Design." Wiley, 2005.
[11]G. A. T. Warren L. Stutzman, "Antenna Theory and Design, 3rd Edition." Wiley, 2012.
[12]P. Hannan, "The element-gain paradox for a phased-array antenna," IEEE Transactions on Antennas and Propagation, vol. 12, no. 4, pp. 423-433, July 1964.
[13]P. Carter, "Mutual impedance effects in large beam scanning arrays," IRE Transactions on Antennas and Propagation, vol. 8, no. 3, pp. 276-285, May 1960.
[14]J. Allen, "Gain and impedance variation in scanned dipole arrays," IRE Transactions on Antennas and Propagation, vol. 10, no. 5, pp. 566-572, September 1962.
[15]W. Wasylkiwskyj and W. Kahn, "Element patterns and active reflection coefficient in uniform phased arrays," IEEE Transactions on Antennas and Propagation, vol. 22, no. 2, pp. 207-212, March 1974.
[16]K. Yoon-Won and D. Pozar, "Correction of error in reduced sidelobe synthesis due to mutual coupling," IEEE Transactions on Antennas and Propagation, vol. 33, no. 9, pp. 1025-1028, September 1985.
[17]H. Steyskal and J. S. Herd, "Mutual coupling compensation in small array antennas," IEEE Transactions on Antennas and Propagation, vol. 38, no. 12, pp. 1971-1975, December 1990.
[18]T. Takahashi, Y. Konishi, S. Makino, H. Ohmine, and H. Nakaguro, "Fast Measurement Technique for Phased Array Calibration," IEEE Transactions on Antennas and Propagation, vol. 56, no. 7, pp. 1888-1899, July 2008.
[19]W. P. M. N. Keizer, "Fast and Accurate Array Calibration Using a Synthetic Array Approach," IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4115-4122, August 2011.
[20]R. Long, J. Ouyang, F. Yang, W. Han, and L. Zhou, "Fast Amplitude-Only Measurement Method for Phased Array Calibration," IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1815-1822, November 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top