(3.239.33.139) 您好!臺灣時間:2021/03/07 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡耀升
研究生(外文):Yao-Sheng Hu
論文名稱:跳躍式切換演算在次區間類比數位轉換器之應用
論文名稱(外文):Application of the Skipping Switching Algorithm in the Subranging ADC
指導教授:陳信樹
指導教授(外文):Hsin-Shu Chen
口試委員:吳介琮鍾勇輝許雲翔林英儒蔡宗亨
口試委員(外文):Jieh-Tsorng WuYung-Hui ChungYun-Shiang ShuYing-Zu LinTsung-Heng Tsai
口試日期:2019-07-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:211
中文關鍵詞:類比至數位轉換器時間交錯式連續漸進式次區間架構雜訊整形連續漸進式電容陣列校正電容陣列切換方式驅動電路觸控應用高速通訊系統應用
DOI:10.6342/NTU201902905
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文結合了這五年來,本人與混合信號實驗室之團隊對結合跳躍式演算法 (Skipping Switching Algorithm)與次區間(Subranging)架構的類比數位轉換器(ADC) 之研究,並應用在現今需求量持續增溫的物聯網(IOT)、整合觸控與顯示晶片(TDDI IC) 與億赫茲(GHz)取樣通訊系統中。為了達到低功耗,此篇論文提出了兩種不同的省電切 換方式,分別為切換能量曲線翻轉(Energy-Curve Reshape)技術與重複利用切換(ReSwitching)技術,試圖使應用於觸控感測應用的 ADC 更省電。為了達到高解析度,本論 文也迭代出了兩種應用於雜訊整形(Noise-Shapping)之連續漸進式(SAR) ADC 技術,分 別為殘餘電壓產生技術(Residue Voltage Generate Method)與被動增益多輸入通道震 盪比較器(Passive-Gain Multiple-Input Ring Comparator),並將解析度推到十三位 元。在節省面積的部分,本論文利用小單位電容搭配權重分裂補償演算(Weight-Split Algorithm)與飄移(Offset)校正,將整體電容陣列大小壓在 KT/C 雜訊的限制,並達到 十四位元的解析度。傳統上,SAR ADC 與其驅動電路結合往往造成驅動電路極大的設計 難度,因此本論文也提出兩種方式,分別為偵測動態開迴路補償系統(Detective OpenLoop Dynamic)簡稱 DeOLD,以及 DeOLD 與穩壓器混合系統,企圖舒緩驅動電路的壓力, 並將電路解析度推到十三位元。在 GHz 取樣通訊系統中,本論文也提出了兩個高速轉換 器的想法,試圖利用無校正的方式將 ADC 的速度拉到 GHz 取樣與十位元之解析度,最後 結合次區間架構並聯四通道的時間交錯(Time-Interleaved) ADC,並加上零點交叉校正 系統(Zero-Crossing Skew Calibration)達到十二位元一億次取樣頻率有低功率的 ADC。 經由十三個實作作品的量測結果,本論文說明了跳躍式演算法加上次區間架構在某些特 定規格上的應用,可以達到品質因數(Figure of Merit)極佳的水準,例如:小面積十 二到十四位元一百萬次取樣(1 MS/s)左右物聯網與觸控應用的 ADC 以及一億次取樣(1 GS/s)二到四通道應用於 GHz 通訊系統的時間交錯 ADC。
This thesis concludes author’s researches in the topic of “the applications of the subranging successive-approximation register (SAR) analog-to-digital (ADC) with the skipping switching method”. The applications includes recently popular internet of things (IOT), touch with driver display integration (TDDI) and giga-hertz (GHz) communication system. Two energy-efficient capacitive digital-to-analog (CDAC) switching methods, namely energy-curve reshape technique and re-switching technique, are presented to makes the ADC more suitable for the touch sensors of the IOT and TDDI applications. This dissertation also proposes two techniques, namely the residue voltage generation method and the passive gain multiple-input ring comparator, for the noise-shapping (NS) architecture with the skipping switching method to increase the resolution up to 13 bits effectively. In terms of shrinking the chip area, the proposed weight-split compensation algorithm successfully combines the energy-efficient skipping switching method with the accurate digital calibration. Hence, the ADC system can maintain high linearity to 14-bit resolution, even the size of the unit capacitor is down to the KT/C limitation. The high-peak dynamic current consumption of the SAR ADC increases the difficulty of the driving system design traditionally. The proposed detective open-loop dynamic (DeOLD) system and the DeOLD hybrid system with an energy-efficient regulator reduce the power consumption of the power system. In addition, it minimizes the size of the decoupling capacitor, which is more suitable for the TDDI system with the zero-capacitor technology. The subranging architecture with the skipping switching method can also be utilized in the ero-crossing skew calibration to achieve low-power 4-channel 12-bit 1 GS/s TI-ADC for the GHz communication system. In conclusion, this dissertation uses thirteen circuit implementation to explain that the subranging architecture with the skipping switching method can achieve better figure of merit (FoM) in certain applications, such as the small area 12-to-14-bit 1 MS/s ADC for IOT sensors and touching sensing of TDDI or 1 GS/s 10-to-12-bit 2-to-4-channels time-interleaved ADC for the GHz communication system.
Chapter 1: Introduction
I. Motivation & Thesis Organization 1
II. Fundamental Specification Definition of ADC 3
A. Offset Error 3
B. Gain Error 4
C. Differential and Integral Nonlinearity (DNL, and INL) 5
D. Signal-to-Noise Ratio (SNR) 5
E. Total Harmonic Distortion (THD) 7
F. Spurious-Free Dynamic Range (SFDR) 7
G. Signal-to-Noise and Distortion Ratio (SNDR) and Effective Number of Bits (ENOB) 8
H. Figure of Merit (FoM) 8
III. Architecture of analog-to-digital converter 9
A. Flash Architecture 10
B. Two-Step and Subranging Architecture 11
C. Pipeline Architecture 11
D. Successive-Approximation Register (SAR) Architecture 12
E. Delta-Sigma Modulation (DSM) ADC 14
F. Incremental ADC 15
G. Time-Interleaved (TI) ADC 16
H. SAR-Based Hybrid Architecture 18
1. Flash-SAR Hybrid Architecture 19
2. Pipeline-SAR Hybrid Architecture 20
3. Noise-Shaping SAR Architecture 22
4. SAR-Assisted Subranging SAR Architecture 23

Chapter 2: Basic Component of SAR ADC
I. Introduction 25
II. Comparator 25
A. Comparator Noise 28
B. Comparator Offset 31
III. Bootstrape 32
A. Clock Feedthrough 33
B. Signal Feedthrough 33
C. Charge Injection 34
D. Speed Consideration 36
E. Sampling Switch Layout Style 36
IV. Capacitive DAC (CDAC) Array 38
A. KT/C Sampling Noise 38
B. Settling Error 39
C. Mismatch 40
D. Layout Style 42
V. CDAC Switching Method 43
VI. SAR Logic 46

Chapter 3: High Resolution Sensor Application
I. Introduction 48
II. Energy-Efficient CDAC Switching Technique 49
A. Energy-Curve Reshape (ECR) Technique 49
1. Architecture 50
2. Proposed ECR Technique 51
3. Polarity Quantizer with Bottom-Plate Sampling 53
4. Pulse-Type Self-Trigger Latch (PT-STL) Technique 55
5. Measurement Results 56
B. Re-Switching (RSW) Technique 57
1. Proposed DAC RSW Technique 58
2. Architecture and Circuit Implementation 60
3. Measurement Results 62
C. CDAC Calibration Technique 64
1. CDAC mismatch weight relation 67
2. Architecture and Circuit Implementation of 12-bit subranging ADC 73
3. Measurement Results of 12-bit subranging ADC 76
4. Offset Calibration for 14-bit Subranging SAR ADC 79
5. Measurement Results of 14-bit subranging ADC 86
III. Noise Suppression Technique 91
A. LSB-Capacitor-Reusing Subranging Architecture 91
1. Proposed Architecture 92
2. Noise Shaping Analysis 94
3. Circuit Implementation 99
4. Experimental Results 104
B. Passive Gain Multiple-Input Ring Comparator 109
1. Proposed Architecture 110
2. Noise Shaping Analysis 112
3. Circuit Implementation 115
4. Experimental Results 120
IV. Conclusion 121

Chapter 4: Zero-Capacitor Column ADC Application
I. Introduction 123
II. DeOLD Compensation Technique 123
A. Proposed DeOLD Concept with Subranging ADC 126
B. Compensation Algorithm 128
C. Charge Compensator 131
D. Circuit Implementation 133
E. Experimental Results 137
F. Conclusion 141
G. Appendix – Derivation of EConv_ideal 141
H. Appendix – Explanation of PSRR 143
III. Hybrid Reference Buffer 146
A. Proposed Hybrid Reference Architecture 146
B. Power Efficient Reference Buffer Circuit Technique 149
1. Accumulated Charge Compensation 149
2. Multi-Gain Stage Dynamic Reference Voltage Stabilizer (RVS) 150
3. VCM Capacitance Reservoir 156
C. Experimental Results 156
IV. Conclusion 157

Chapter 5: High-Speed Communication Application
I. Introduction 159
II. Subranging High Speed Concept 160
A. Advantages of the subranging SAR ADC 161
B. Measurement Results 164
C. Conclusion 166
III. Non-Calibration Skew Suppression Technique 166
A. Proposed 2-Way 2-step SAR ADC with Low-Skew Demultiplexer 167
1. Overall ADC Architecture 167
2. Low-Skew Demultiplexer 169
3. Design Considerations of sub-ADC 170
B. Measurement Result 171
C. Conclusion 173
IV. Zero-Crossing Skew Calibration Method 174
A. Error Sources in TI-ADC 174
1. Offset Mismatch 174
2. Gain Mismatch 175
3. Timing Skew Mismatch 177
B. Defects of a Non-Skew Calibration TI-ADC System 179
1. Prototype Circuit Implementation 180
2. Experimental Results 184
3. Bottleneck and Conclusion 191
C. Skew Calibration TI-ADC System 192
1. Skew Calibration Technique 192
2. Circuit Implementation 200
3. Simulation Results 201
D. Conclusion 203

Chapter 6: Conclusion of this Dissertation
I. Conclusion 204

Reference
I. Reference 205
[1]C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[2]H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” IEEE I-SSCC Dig. Tech. Papers, pp. 196-197, Feb. 2014.
[3]N. Le Dortz, J.-P. Blanc, T. Simon, S. Verhaeren, E. Rouat, P. Urard, S. Le Tual1, D. Goguet, C. L.-Perrault, and P. Benabes, “A 1.62GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70dBFS,” IEEE ISSCC Dig. Tech. Papers, pp. 386-387, Feb. 2014.
[4]C.-C. Tu, Y.-K. Wang, and T.-H. Lin, “A Low-Noise Area-Efficient Chopped VCO-Based CTDSM for Sensor Applications in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 52, no. 10, pp. 2523-2532, Oct. 2017.
[5]H.-W. Chen, “Energy Efficient Nyquist Rate Analog to Digital Converter,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University doctoral dissertation, Chapter. 1, pp.108-134, Mar. 2012.
[6]Maxim Integrated, “INL/DNL Measurements for High-Speed Analog-to-Digital Converters (ADCs),” Mov. 20, 2001. [Online]. Available: https://www.maximintegrated.com/en/app-notes/index.mvp/id/283
[7]Principles of Data Conversion System Design, illustrated, IEEE Press, Behzad Razavi, 1995.
[8]Walt Kester, “Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don''t Get Lost in the Noise Floor,” Analog Devices, MT-003 Tutorial, 2009. [Online]. Available: https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf
[9]Discrete-Time Signal Processing: International Edition, 3rd Edition, Pearson, Alan V. Oppenheim and Ronald W. Schafer, Dec. 31, 2007.
[10]Y.-Z. Lin, C.-W. Lin and S.-J. Chang, “A 5-bit 3.2-GS/s Flash ADC With a Digital Offset Calibration Scheme,” IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, vol. 18, no. 3, pp. 509-513, May 2009.
[11]H.-C. Chen (Vanessa) and L. Pileggi, “A 69.5mW 20GS/s 6b Time-Interleaved ADC with Embedded Time-to-Digital Calibration in 32nm CMOS SOI,” IEEE ISSCC Dig. Tech. Papers, pp. 380-381, Feb. 2014.
[12]S. Zhu, B. Wu, Y. Cai, and Y. Chiu, “A 2GS/s 8b Flash ADC Based on Remainder Number System in 65nm CMOS,” IEEE Symp. VLSI Circuits, pp. C284-C285, Jun. 2017.
[13]I.-M. Yi, N. Miura, H. Fukuyama, and H. Nosaka, “A 15.1-mW 6-GS/s 6-bit Flash ADC with Selectively Activated 8× Time-Domain Interpolation,” IEEE A-SSCC Dig. Tech. Papers, pp. 239-242, Nov. 2018.
[14]R. E. J. van de Grift, I. W. J. M. Rutten, and M. van der Veen, “An 8-bit video ADC incorporating folding and interpolation techniques,” IEEE J. Solid-State Circuits, vol. 22, pp. 944-953, Dec. 1987.
[15]Y.-H. Chung and J.-T. Wu, “A CMOS 6-mW 10-bit 100-MS/s Two-Step ADC,” IEEE J. Solid-State Circuits, vol. 45, pp. 2217-2226, Nov. 2010.
[16]H. Huang, L. Du, and Y. Chiu, “A 1.2-GS/s 8-bit two-step SAR ADC in 65-nm CMOS with passive residue transfer,” IEEE A-SSCC Dig. Tech. Papers, pp. 1-4, Nov. 2015.
[17]Y.-S. Hu, P.-C. Huang, M.-T. Yang, S.-W. Wu, and H.-S. Chen, “A 0.9V 15fJ/conversion-step 8-bit 1.5GS/s two-step SAR ADC,” IEEE A-SSCC Dig. Tech. Papers, pp. 81-84, Nov. 2016.
[18]Y.-S. Hu, P.-C. Huang, and H.-S. Chen, “A 12.5-fJ/Conversion-Step 8-Bit 800-MS/s Two-Step SAR ADC,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, pp. 1166-1170, Dec. 2016.
[19]T. B. Cho and P. R. Gray, “A 10 b, 20 Msample/s, 35 mW pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 30, pp. 166-172, Mar. 1995.
[20]B. Murmann and B. E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification,” IEEE J. Solid-State Circuits, vol. 38, pp. 2040-2050, Dec. 2003.
[21]S. H. Lewis, H. S. Fetterman, G. F. Gross, R. Ramachandran, and T. R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 27, pp. 351-358, Mar. 1992.
[22]J. L. McCreary and P. R. Gray, “All-MOS charge redistribution analog-to-digital conversion techniques. I,” IEEE J. Solid-State Circuits, vol. 10, pp. 371-379, Jun. 1975.
[23]C.-C. Liu, C.-H. Kuo, and Y.-Z. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, pp. 2645-2654, Nov. 2015.
[24]L. Kull, D. Luu, C. Menolfi, M. Braendli, P. A. Francese, T. Morf, M. Kossel, H. Yueksel, A. Cevrero, I. Ozkaya, and T. Toifl, “A 10b 1.5GS/s pipelined-SAR ADC with background second-stage common-mode regulation and offset calibration in 14nm CMOS FinFET,” IEEE ISSCC Dig. Tech. Papers, pp. 474-475, Feb. 2017.
[25]G. Cauwenberghs and G. C. Temes, “Adaptive digital correction of analog errors in MASH ADCs. I. Off-line and blind on-line calibration,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, pp. 621-628, Jul. 2000.
[26]P. Kiss, J. Silva, A. Wiesbauer, T. Sun, U.-K. Moon, J. T. Stonick, and G. C. Temes, “Adaptive digital correction of analog errors in MASH ADCs. II. Correction using test-signal injection,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, pp. 629-638, Jul. 2000.
[27]Y.-S. Shu, “Oversampling ?Σ Modulator Design for Data Conversion (I)”, private communication in Advanced Analog Integrated Circuit Class of National Taiwan University, Nov. 27, 2014.
[28]Yi Zhang, “Power Efficient Architectures for High Accuracy Analog-to-Digital Converters,” Electrical and Computer Engineering of Oregon State University doctoral dissertation, Chapter. 1, pp. 22-25, Oct. 2016.
[29]T. C. Caldwell and D. A. Johns, “Incremental Data Converters at Low Oversampling Ratios,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 1525-1537, Mar. 2010.
[30]P. Vogelmann, M. Haas, and M. Ortmanns, “A 1.1mW 200kS/s incremental ΔΣ ADC with a DR of 91.5dB using integrator slicing for dynamic power reduction,” IEEE ISSCC Dig. Tech. Papers, pp. 236-238, Feb. 2018.
[31]N. Kurosawa, K. Maruyama, H. Kobayashi, H. Sugawara, and K. Kobayashi, “Explicit formula for channel mismatch effects in time-interleaved ADC systems,” IEEE Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, vol. 2, pp. 763-768, May. 2000.
[32]S.-W. Wu, “High-Speed and Energy-Efficient Time-Interleaved Subranging SAR ADC,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University master dissertation, Chapter. 3, pp.14-45, Oct. 2016.
[33]M. E.-Chammas and B. Murmann, “A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With Background Timing Skew Calibration,” IEEE J. Solid-State Circuits, vol. 46, pp. 838-847, Mar. 2011.
[34]S. Devarajan, L. Singer, D. Kelly, S. Kosic, T. Pan, J. Silva, J. Brunsilius, Daniel R.-Losada, F. Murden, C. Speir, J. Bray, E. Otte, N. Rakuljic, P. Brown, T. Weigandt, Q. Yu, D. Paterson, C. Petersen, and J. Gealow, “A 12b 10GS/s interleaved pipeline ADC in 28nm CMOS technology,” IEEE ISSCC Dig. Tech. Papers, pp. 288-289, Feb. 2017.
[35]C.-Y. Lin, Y.-H. Wei, and T.-C. Lee, “A 10b 2.6GS/s time-interleaved SAR ADC with background timing-skew calibration,” IEEE ISSCC Dig. Tech. Papers, pp. 468-469, Feb. 2016.
[36]L. Kull, J. Pliva, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Brandli, M. Kossel, T. Morf, T. M. Andersen, and Y. Leblebici, “Implementation of Low-Power 6-8 b 30-90 GS/s Time-Interleaved ADCs With Optimized Input Bandwidth in 32 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, pp. 636-648, Mar. 2016.
[37]C.-C. Huang, C.-Y. Wang, and J.-T. Wu, “A CMOS 6-Bit 16-GS/s Time-Interleaved ADC Using Digital Background Calibration Techniques,” IEEE J. Solid-State Circuits, vol. 46, pp. 848-858, Mar. 2011.
[38]Ameya Bhide, “Design of High-Speed Time-Interleaved Delta-Sigma D/A Converters,” Department of Electrical Engineering Linkoping University, Linkoping, Sweden, 2015. [Online]. Available: https://old.liu.se/elliit/artiklar-3/1.741851/AmeyaBhide.pdf
[39]S. Verma, A. Kasapi, L.-M. Lee, D. Liu, D. Loizos, S.-H. Paik, A. Varzaghani, S. Zogopoulos, and S. Sidiropoulos, “A 10.3GS/s 6b flash ADC for 10G Ethernet applications,” IEEE ISSCC Dig. Tech. Papers, pp. 462-463, Feb. 2013.
[40]X. Zheng, Z. Wang, F. Li, F. Zhao, S. Yue, C. Zhang, and Z. Wang, “A 14-bit 250 MS/s IF Sampling Pipelined ADC in 180 nm CMOS Process,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 9, pp. 1381-1392, Aug. 2016.
[41]Y.-S. Shu and B.-S. Song, “A 15-bit Linear 20-MS/s Pipelined ADC Digitally Calibrated With Signal-Dependent Dithering,” IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 342-350, Feb. 2008.
[42]J. Robert and P. Deval, “A second-order high-resolution incremental A/D converter with offset and charge injection compensation,” IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 736-741, Mar. 1988.
[43]K. Yoshioka, R. Saito, T. Danjo, S. Tsukamoto, and H. Ishikuro, “Dynamic Architecture and Frequency Scaling in 0.8–1.2 GS/s 7 b Subranging ADC,” IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 932-945, Apr. 2015.
[44]Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-Bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 3, pp. 570-581, Nov. 2013.
[45]F. van der Goes, C. Ward, S. Astgimath, H. Yan, J. Riley, J. Mulder, S. Wang, and K. Bult, “A 1.5mW 68dB SNDR 80MS/s 2× interleaved SAR-assisted pipelined ADC in 28nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 200-201, Feb. 2014.
[46]J. A. Fredenburg and M. P. Flynn, "A 90-MS/s 11-MHz-Bandwidth 62-dB SNDR Noise-Shaping SAR ADC," IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2898-2904, Dec. 2012.
[47]Z. Chen, M. Miyahara, and A. Matsuzawa, "A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC," IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C64-C65, Jun. 2015.
[48]W. Guo and N. Sun, "A 12b-ENOB 61μW noise-shaping SAR ADC with a passive integrator," IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 405-408, Sep. 2016.
[49]C.-C. Liu and M. Huang, "A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter," IEEE ISSCC Dig. Tech. Papers, pp. 466-467, Feb. 2017.
[50]Y.-S. Shu, L.-T. Kuo, and T.-Y. Lo, "An Oversampling SAR ADC with DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2928-2940, Dec. 2016.
[51]W.-J. Wang, “A 10MS/s Noise Shaping Successive-Approximation Register Analog-to-Digital Converter Based on an LSB-Cap-Reusing Sub-range Architecture,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University master dissertation, Feb. 2019.
[52]Y.-S. Hu, C.-H. Shih, H.-W. Chen, and H.-S. Chen, “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40nm CMOS,” IEEE A-SSCC Dig. Tech. Papers, pp. 81-84, Nov. 2014.
[53]Y.-S. Hu, K.-Y. Lin, and H.-S. Chen, “A 12-bit 200kS/s subranging SAR ADC with an energy-curve reshape technique,” IEEE A-SSCC Dig. Tech. Papers, pp. 149-152, Nov. 2016.
[54]Y.-S. Hu, K.-Y. Lin, and H.-S. Chen, "A 510nW 12-bit 200kS/s SAR-assisted SAR ADC using a re-switching technique," IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C238-C239, Jun. 2017.
[55]Y.-S. Hu, L.-Y. Huang, and H.-S. Chen, “A 0.6V 1.63fJ/c.-s. Detective Open-Loop Dynamic System Buffer for SAR ADC in Zero-Capacitor TDDI System,” IEEE A-SSCC Dig. Tech. Papers, pp. 103-106, Nov. 2018.
[56]G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “10-bit 30-MS/s SAR ADC Using a Switchback Switching Method,” IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, vol. 21, no. 3, pp. 584-588, Mar. 2013.
[57]S. B.-Mashhadi and R. Lotfi, "Analysis and Design of a Low-Voltage Low-Power Double-Tail Comparator," IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, vol. 22, no. 2, pp. 343-352, Feb. 2014.
[58]M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9μW at 1 MS/s,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010.
[59]T. Sepke, P. Holloway, C. G. Sodini, and H. S. Lee, “Noise analysis for comparator-based circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 3, pp. 541-553, Mar. 2009.
[60]Probability and stochastic processes, 2rd ed., John Wiley & Sons Inc., Roy D. Yates and David J. Goodman, 2005.
[61]B. Wicht, T. Nirschl, and D. S.-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, Jul. 2004.
[62]J.-H. Shieh, M. Patil, and B.J. Sheu, “Measurement and analysis of charge injection in MOS analog switches,” IEEE Journal of Solid-State Circuits, vol. 22, no. 2, pp. 277-281, Feb. 1987.
[63]Advances in Analog and RF IC Design for Wireless Communication Systems, 1st ed., Academic Press, D. W. Leenaerts and G. Manganaro, Chapter 9, May 2013.
[64]Design of Analog CMOS Integrated Circuits, 1st ed., McGraw-Hill Education, B. Razavi, Aug. 15, 2000.
[65]M.-T. Yang, “Low-Skew High-Speed Low-Power Four-Channel Time-Interleaved SAR ADC,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University master dissertation, Oct. 2016.
[66]F. Kuttner, “A 1.2V 10b 20MSample/s Non-Binary Successive Approximation ADC in 0.13μm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 176-177, Feb. 2002.
[67]C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with,” IEEE ISSCC Dig. Tech. Papers, pp. 386-387, Feb. 2010.
[68]Y.-S. Hu, J.-H. Lin, D.-G. Lin, K.-Y. Lin, H.-S. Chen, “An 89.55dB-SFDR 179.6dB-FoMs 12-bit l MS/s SAR-Assisted SAR ADC with Weight-Split Compensation Calibration,” IEEE A-SSCC Dig. Tech. Papers, pp. 253-256, Nov. 2018.
[69]F.-J. Chiang, “All Digital Calibration for High-Resolution Successive-Approximation Register Analog-to-Digital Converter,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University master dissertation, Jan. 2019.
[70]G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-μW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications,” IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012.
[71]P. J. A. Harpe, C. Zhou, Y. Bi, N. P. van der Meijs, X. Wang, K. Philips, G. Dolmans, and H. de Groot, “A 26μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios,” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1585-1595, Jul. 2011.
[72]W.-H. Tseng, W.-L. Lee, C.-Y. Huang, and Pao-Cheng Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, Oct. 2016.
[73]M. Anis, “Subthreshold leakage current: challenges and solutions,” IEEE International Conference on Fuzzy Systems, pp. 77-80, Dec. 2003.
[74]B.P. Ginsburg and A.P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 184-187, May 2005.
[75]M. Yip and A. P. Chandrakasan, “A Resolution-Reconfigurable 5-to-10b 0.4-to-1V Power Scalable SAR ADC,” IEEE ISSCC Dig. Tech. Papers, pp. 190-191, Feb. 2011.
[76]V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” IEEE Electronics Letters, vol. 46, no. 9, pp. 620-621, Apr. 2010.
[77]C.-E. Hsieh and S.-I. Liu, “A 0.3V 10bit 7.3fJ/conversion-step SAR ADC in 0.18μm CMOS,” IEEE A-SSCC Dig. Tech. Papers, pp. 325-328, Nov. 2014.
[78]C.-H. Kuo and C.-E. Hsieh, “A high energy-efficiency SAR ADC based on partial ?oating capacitor switching technique,” IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 475-478, Sep. 2011.
[79]Y. Lim and M. P. Flynn, “A 1mW 71.5dB SNDR 50MS/S 13b fully differential ring-amplifier-based SAR-assisted pipeline ADC,” IEEE ISSCC Dig. Tech. Papers, pp. 458-459, Feb. 2015.
[80]S.-W. (Michael) Chen, and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
[81]P. Harpe, E. Cantatore, and A. van Roermund, “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” IEEE ISSCC Dig. Tech. Papers, pp. 270-271, Feb. 2013.
[82]M. Ding, P. Harpe, Y.-H. Liu, B. Busze, K. Philips, and H. de Groot, “A 5.5fJ/conv-step 6.4MS/s 13b SAR ADC Utilizing a Redundancy-Facilitated Background Error-Detection-and-Correction Scheme,” IEEE ISSCC Dig. Tech. Papers, pp. 458-459, Feb. 2015.
[83]M.-H. Wu, Y.-H. Chung, and H.-S. Li, “A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC using Capacitor-Swapping Technique,” IEEE A-SSCC Dig. Tech. Papers, pp. 157-160, Nov. 2012.
[84]P. Harpe, E. Cantatore, and A. van Roermund, “An Oversampled 12/14b SAR ADC with Noise Reduction and Linearity Enhancements Achieving up to 79.1dB SNDR,” IEEE ISSCC Dig. Tech. Papers, pp. 194-195, Feb. 2014.
[85]T. Miki, T. Morie, K. Matsukawa, Y. Bando, T. Okumoto, K. Obata, S. Sakiyama, and S. Dosho, “A 4.2mW 50MS/s 13bit CMOS SAR ADC With SNR and SFDR Enhancement Techniques,” IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1372-1381, Jun. 2015.
[86]P.-C. Huang, Y.-S. Hu, H.-Y. Tai, and H.-S. Chen, “An 8-bit 900MS/s Two-Step SAR ADC,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2898-2898, May 2016.
[87]S.-E. Hsieh and C.-C. Hsieh, “A 0.44fJ/conversion-step 11b 600KS/s SAR ADC with semi-resting DAC,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C160-C161, Jun. 2016.
[88]W. Liu, P. Huang, and Y. Chiu, “A 12-bit 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibration,” IEEE Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2661-2672, Nov. 2011.
[89]J. Shen, A. Shikata, A. Liu, and F. Chalifoux, “A 12-bit 31.1uW 1MS/s SAR ADC with On-Chip Input-Signal-Independent Calibration Achieving 100.4dB SFDR using 256fF Sampling Capacitance” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C91-C92, Jun. 2018.
[90]Y. Zhou, B. Xu, and Y. Chiu, “A 12 bit 160 MS/s Two-Step SAR ADC With Background Bit-Weight Calibration Using a Time-Domain Proximity Detector,” IEEE Journal of Solid-State Circuits, pp. 920-931, Apr. 2015.
[91]H. S. Lee, D. A. Hodges, and P. R. Gray, “A self-calibrating 15 bit CMOS A/D converter,” IEEE Journal of Solid-State Circuits, vol. 19, no. 6, pp. 813-819, Dec. 1984.
[92]J.-Y. Um, Y.-J. Kim, E.-W. Song, J.-Y. Sim, and H.-J. Park, “A Digital domain calibration of split-capacitor DAC for a differential SAR ADC without additional analog circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 11, pp. 2845-2856, Nov. 2013.
[93]D.-J. Chang, W. Kim, M.-J. Seo, H.-K. Hong, and S.-T. Ryu, “Normalized-Full-Scale-Referencing Digital-Domain Linearity Calibration for SAR ADC,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 322-332, Jan. 2017.
[94]Y. Zhu, C.-H. Chan, S.-P. U, and R. P. Martins, “An 11b 450 MS/s Three-Way Time-Interleaved Subranging Pipelined-SAR ADC in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 51, no. 5, pp. 1223-1234, May 2016.
[95]B.-R.-S. Sung, C.-K. Lee, W. Kim, J.-I. Kim, H.-K. Hong, G.-G. Oh, C.-H. Lee, M. Choi, H.-J. Park, and S.-T. Ryu, “A 6 bit 2 GS/s flash-assisted time-interleaved (FATI) SAR ADC with background offset calibration,” IEEE A-SSCC Dig. Tech. Papers, pp. 281-284, Nov. 2013.
[96]W. Li, F. Li, J. Liu, H. Li, and Z. Wang, “A 13-bit 160MS/s pipelined subranging-SAR ADC with low-offset dynamic comparator,” IEEE A-SSCC Dig. Tech. Papers, pp. 225-228, Nov. 2017.
[97]Z. Chen, M. Miyahara, and A. Matsuzawa, “A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain,” IEEE A-SSCC Dig. Tech. Papers, pp. 309-312, Nov. 2016.
[98]W. Guo, H. Zhuang, and N. Sun, “A 13b-ENOB 173dB-FoM 2nd-order NS SAR ADC with passive integrators,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C236-C237, Jun. 2017.
[99]Y.-Z. Lin, C.-H. Tsai, S.-C. Tsou, R.-X. Chu, and C.-H. Lu, “A 2.4-mW 25-MHz BW 300-MS/s passive noise shaping SAR ADC with noise quantizer technique in 14-nm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C234-C235, Jun. 2017.
[100]A. Boukhayma and C. Enz, “A new method for kTC noise analysis in periodic passive switched-capacitor networks,” IEEE New Circuits and Systems Conference (NEWCAS), pp. 1-4, Jun. 2015.
[101]M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” IEEE A-SSCC Dig. Tech. Papers, pp. 269-272, Nov. 2008.
[102]R. Kapusta, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 472-473, Feb. 2013.
[103]M. J. Kramer, E. Janssen, K. Doris, and B. Murmann, “A 14 b 35 MS/s SAR ADC Achieving 75 dB SNDR and 99 dB SFDR With Loop-Embedded Input Buffer in 40 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2891-2900, Dec. 2015.
[104]M. Shim, S. Jeong, P. Myers, S. Bang, C. Kim, D. Sylvester, D. Blaauw, and W. Jung, “An oscillator collapse-based comparator with application in a 74.1dB SNDR, 20KS/s 15b SAR ADC,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C158-C159, Jun. 2016.
[105]G.-H. (Tony) Chen, private communication, “The Application and Market of TDDI,” Sitronix Technology Cooperation, Oct. 2018.
[106]M.-N. Liao, “Area-Saving Driving Circuit for Display Panel,” U.S. Patent 0 049 459, Feb. 20, 2014.
[107]M. Liu, P. Harpe, R. van Dommele, and A. van Roermund, “A 0.8V 10b 80kS/s SAR ADC with duty-cycled reference generation,” IEEE ISSCC Dig. Tech. Papers, pp. 278-279, Feb. 2015.
[108]M. Ho, K.-N. Leung, and K.-L. Mak, “A Low-Power Fast-Transient 90-nm Low-Dropout Regulator With Multiple Small-Gain Stages,” IEEE Journal of Solid-State Circuits, vol. 45, no. 11, pp. 2466-2475, Nov. 2010.
[109]Y.-Z. Lin, C.-H. Tsai, S.-C. Tsou, and C.-H. Lu, “A 8.2-mW 10-b 1.6-GS/s 4× TI SAR ADC with Fast Reference Charge Neutralization and Background Timing-Skew Calibration in 16-nm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C204-C205, Jun. 2016.
[110]Y.-S. (Dean) Hu, C.-K. (Copa) Wu, and C.-J. (Daniel) Tung, “Noise Suppression Circuit,” U.S. Patent 0 285 862, Oct. 5, 2017.
[111]J. Shen, A. Shikata, L. Fernando, N. Guthrie, B. Chen, M. Maddox, N. Mascarenhas, R. Kapusta, and M. Coln, “A 16-bit 16MS/s SAR ADC with On-Chip Calibration in 55nm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C282-C283, Jun. 2017.
[112]C. Li, C.-H. Chan, Y. Zhu and R. P. Martins, “Analysis of Reference Error in High-Speed SAR ADCs With Capacitive DAC,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 82-93, Jan. 2019.
[113]Y.-J. Chen and C.-C. Hsieh, “A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C35-C36, Jun. 2014.
[114]M. Liu, A. H. M. van Roermund and P. Harpe, “A 10-b 20-MS/s SAR ADC With DAC-Compensated Discrete-Time Reference Driver,” IEEE Journal of Solid-State Circuits, vol. 54, no. 2, pp. 417-427, Feb. 2019.
[115]G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” IEEE A-SSCC Dig. Tech. Papers, pp. 289-292, Nov. 2013.
[116]S.-H. Wan, C.-H. Kuo, S.-J. Chang, G.-Y. Huang, C.-P. Huang, G. J. Ren, K.-T. Chiou, and C.-H. Ho, “A 10-bit 50-MS/s SAR ADC with techniques for relaxing the requirement on driving capability of reference voltage buffers,” IEEE A-SSCC Dig. Tech. Papers, pp. 293-296, Nov. 2013.
[117]S.-K. Lee, S.-J. Park, H.-J. Park, and J.-Y. Sim, “A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface,” IEEE Journal of Solid-State Circuits, vol. 46, no. 3, pp. 651-659, Mar. 2011.
[118]L. Kull, and T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, T. M. Andersen, and Y. Leblebici, “A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 468-469, Feb. 2013.
[119]Y. Duan and E. Alon, “A 12.8 GS/s Time-Interleaved ADC With 25 GHz Effective Resolution Bandwidth and 4.6 ENOB,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1725-1738, Aug. 2014.
[120]Y. Zhu, C.-H. Chan, S.-P. U, and R.P. Martins, “An 11b 900 MS/s time-interleaved sub-ranging pipelined-SAR ADC,” IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 211-214, Sep. 2014.
[121]C.-H. Chan, Y. Zhu, S.-W. Sin, S.-P. U, and R.P. Martins, “A 3.8mW 8b 1GS/s 2b/cycle interleaving SAR ADC with compact DAC structure,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C86-C87, Jun. 2012.
[122]H.-K. Hong, W. Kim, H.-W. Kang, S.-J. Park, M. Choi, H.-J. Park, and Seung-Tak Ryu, “A Decision-Error-Tolerant 45 nm CMOS 7b 1 GS/s Nonbinary 2b/Cycle SAR ADC,” IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 543-555, Feb. 2015.
[123]Y.-S. Hu, L.-Y. Huang, and H.-S. Chen, “A 0.6V 1.63fJ/c.-s. Detective Open-Loop Dynamic System Buffer for SAR ADC in Zero-Capacitor TDDI System,” IEEE Journal of Solid-State Circuits Early Access, 2019.
[124]C.-Y. Wang and J.-T. Wu, “A Multiphase Timing-Skew Calibration Technique Using Zero-Crossing Detection,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 6, pp. 1102-1114, Jun. 2009.
[125]C.-Y. Wang and J.-T. Wu, “A background timing-skew calibration technique for time-interleaved analog-to-digital converters,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 4, pp. 299-303, Apr. 2006.
[126]C.-C. Huang, C.-Y. Wang, and J.-T. Wu, “A CMOS 6-Bit 16-GS/s Time-Interleaved ADC Using Digital Background Calibration Techniques,” IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 848-858, Apr. 2011.
[127]H. Wei, P. Zhang, B. D. Sahoo, and B. Razavi, “An 8-Bit 4-GS/s 120-mW CMOS ADC,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1751-1761, Aug. 2014.
[128]N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 3, pp. 261-271, Mar. 2001.
[129]Y.-C. Lien, “A 14.6mW 12b 800MS/s 4×time-interleaved pipelined SAR ADC achieving 60.8dB SNDR with Nyquist input and sampling timing skew of 60fsrms without calibration,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C156-C157, Jun. 2016.
[130]I-N. Ku, Z. Xu, Y.-C. Kuan, Y.-H. Wang, and M.-C. (Frank) Chang, “A 40-mW 7-bit 2.2-GS/s Time-Interleaved Subranging CMOS ADC for Low-Power Gigabit Wireless Communications,” IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1854-1865, Aug. 2012.
[131]H.-K. Hong, H.-W. Kang, D.-S. Jo, D.-S. Lee, Y.-S. You, Y.-H. Lee, H.-J. Park, and S.-T. Ryu, “A 2.6b/cycle-architecture-based 10b 1 GS/s 15.4mW 4×-time-interleaved SAR ADC with a multistep hardware-retirement technique,” IEEE ISSCC Dig. Tech. Papers, pp. 470-471, Feb. 2015.
[132]S. Lee, A. P. Chandrakasan, and H.-S. Lee, “A 1 GS/s 10b 18.9 mW Time-Interleaved SAR ADC With Background Timing Skew Calibration,” IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2846-2856, Dec. 2014.
[133]S. M. Louwsma, A. J. M. van Tuijl, M. Vertregt, and B. Nauta, “A 1.35 GS/s, 10 b, 175 mW Time-Interleaved AD Converter in 0.13 μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 778-786, Apr. 2008.
[134]B.-R.-S. Sung, D.-S. Jo, I.-H. Jang, D.-S. Lee, Y.-S. You, Y.-H. Lee, H.-J. Park, and S.-T. Ryu, “A 21fJ/conv-step 9 ENOB 1.6GS/S 2× time-interleaved FATI SAR ADC with background offset and timing-skew calibration in 45nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 464-465, Feb. 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔