|
[1]C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010. [2]H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” IEEE I-SSCC Dig. Tech. Papers, pp. 196-197, Feb. 2014. [3]N. Le Dortz, J.-P. Blanc, T. Simon, S. Verhaeren, E. Rouat, P. Urard, S. Le Tual1, D. Goguet, C. L.-Perrault, and P. Benabes, “A 1.62GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70dBFS,” IEEE ISSCC Dig. Tech. Papers, pp. 386-387, Feb. 2014. [4]C.-C. Tu, Y.-K. Wang, and T.-H. Lin, “A Low-Noise Area-Efficient Chopped VCO-Based CTDSM for Sensor Applications in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 52, no. 10, pp. 2523-2532, Oct. 2017. [5]H.-W. Chen, “Energy Efficient Nyquist Rate Analog to Digital Converter,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University doctoral dissertation, Chapter. 1, pp.108-134, Mar. 2012. [6]Maxim Integrated, “INL/DNL Measurements for High-Speed Analog-to-Digital Converters (ADCs),” Mov. 20, 2001. [Online]. Available: https://www.maximintegrated.com/en/app-notes/index.mvp/id/283 [7]Principles of Data Conversion System Design, illustrated, IEEE Press, Behzad Razavi, 1995. [8]Walt Kester, “Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don''t Get Lost in the Noise Floor,” Analog Devices, MT-003 Tutorial, 2009. [Online]. Available: https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf [9]Discrete-Time Signal Processing: International Edition, 3rd Edition, Pearson, Alan V. Oppenheim and Ronald W. Schafer, Dec. 31, 2007. [10]Y.-Z. Lin, C.-W. Lin and S.-J. Chang, “A 5-bit 3.2-GS/s Flash ADC With a Digital Offset Calibration Scheme,” IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, vol. 18, no. 3, pp. 509-513, May 2009. [11]H.-C. Chen (Vanessa) and L. Pileggi, “A 69.5mW 20GS/s 6b Time-Interleaved ADC with Embedded Time-to-Digital Calibration in 32nm CMOS SOI,” IEEE ISSCC Dig. Tech. Papers, pp. 380-381, Feb. 2014. [12]S. Zhu, B. Wu, Y. Cai, and Y. Chiu, “A 2GS/s 8b Flash ADC Based on Remainder Number System in 65nm CMOS,” IEEE Symp. VLSI Circuits, pp. C284-C285, Jun. 2017. [13]I.-M. Yi, N. Miura, H. Fukuyama, and H. Nosaka, “A 15.1-mW 6-GS/s 6-bit Flash ADC with Selectively Activated 8× Time-Domain Interpolation,” IEEE A-SSCC Dig. Tech. Papers, pp. 239-242, Nov. 2018. [14]R. E. J. van de Grift, I. W. J. M. Rutten, and M. van der Veen, “An 8-bit video ADC incorporating folding and interpolation techniques,” IEEE J. Solid-State Circuits, vol. 22, pp. 944-953, Dec. 1987. [15]Y.-H. Chung and J.-T. Wu, “A CMOS 6-mW 10-bit 100-MS/s Two-Step ADC,” IEEE J. Solid-State Circuits, vol. 45, pp. 2217-2226, Nov. 2010. [16]H. Huang, L. Du, and Y. Chiu, “A 1.2-GS/s 8-bit two-step SAR ADC in 65-nm CMOS with passive residue transfer,” IEEE A-SSCC Dig. Tech. Papers, pp. 1-4, Nov. 2015. [17]Y.-S. Hu, P.-C. Huang, M.-T. Yang, S.-W. Wu, and H.-S. Chen, “A 0.9V 15fJ/conversion-step 8-bit 1.5GS/s two-step SAR ADC,” IEEE A-SSCC Dig. Tech. Papers, pp. 81-84, Nov. 2016. [18]Y.-S. Hu, P.-C. Huang, and H.-S. Chen, “A 12.5-fJ/Conversion-Step 8-Bit 800-MS/s Two-Step SAR ADC,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, pp. 1166-1170, Dec. 2016. [19]T. B. Cho and P. R. Gray, “A 10 b, 20 Msample/s, 35 mW pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 30, pp. 166-172, Mar. 1995. [20]B. Murmann and B. E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification,” IEEE J. Solid-State Circuits, vol. 38, pp. 2040-2050, Dec. 2003. [21]S. H. Lewis, H. S. Fetterman, G. F. Gross, R. Ramachandran, and T. R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 27, pp. 351-358, Mar. 1992. [22]J. L. McCreary and P. R. Gray, “All-MOS charge redistribution analog-to-digital conversion techniques. I,” IEEE J. Solid-State Circuits, vol. 10, pp. 371-379, Jun. 1975. [23]C.-C. Liu, C.-H. Kuo, and Y.-Z. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, pp. 2645-2654, Nov. 2015. [24]L. Kull, D. Luu, C. Menolfi, M. Braendli, P. A. Francese, T. Morf, M. Kossel, H. Yueksel, A. Cevrero, I. Ozkaya, and T. Toifl, “A 10b 1.5GS/s pipelined-SAR ADC with background second-stage common-mode regulation and offset calibration in 14nm CMOS FinFET,” IEEE ISSCC Dig. Tech. Papers, pp. 474-475, Feb. 2017. [25]G. Cauwenberghs and G. C. Temes, “Adaptive digital correction of analog errors in MASH ADCs. I. Off-line and blind on-line calibration,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, pp. 621-628, Jul. 2000. [26]P. Kiss, J. Silva, A. Wiesbauer, T. Sun, U.-K. Moon, J. T. Stonick, and G. C. Temes, “Adaptive digital correction of analog errors in MASH ADCs. II. Correction using test-signal injection,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, pp. 629-638, Jul. 2000. [27]Y.-S. Shu, “Oversampling ?Σ Modulator Design for Data Conversion (I)”, private communication in Advanced Analog Integrated Circuit Class of National Taiwan University, Nov. 27, 2014. [28]Yi Zhang, “Power Efficient Architectures for High Accuracy Analog-to-Digital Converters,” Electrical and Computer Engineering of Oregon State University doctoral dissertation, Chapter. 1, pp. 22-25, Oct. 2016. [29]T. C. Caldwell and D. A. Johns, “Incremental Data Converters at Low Oversampling Ratios,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 1525-1537, Mar. 2010. [30]P. Vogelmann, M. Haas, and M. Ortmanns, “A 1.1mW 200kS/s incremental ΔΣ ADC with a DR of 91.5dB using integrator slicing for dynamic power reduction,” IEEE ISSCC Dig. Tech. Papers, pp. 236-238, Feb. 2018. [31]N. Kurosawa, K. Maruyama, H. Kobayashi, H. Sugawara, and K. Kobayashi, “Explicit formula for channel mismatch effects in time-interleaved ADC systems,” IEEE Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, vol. 2, pp. 763-768, May. 2000. [32]S.-W. Wu, “High-Speed and Energy-Efficient Time-Interleaved Subranging SAR ADC,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University master dissertation, Chapter. 3, pp.14-45, Oct. 2016. [33]M. E.-Chammas and B. Murmann, “A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With Background Timing Skew Calibration,” IEEE J. Solid-State Circuits, vol. 46, pp. 838-847, Mar. 2011. [34]S. Devarajan, L. Singer, D. Kelly, S. Kosic, T. Pan, J. Silva, J. Brunsilius, Daniel R.-Losada, F. Murden, C. Speir, J. Bray, E. Otte, N. Rakuljic, P. Brown, T. Weigandt, Q. Yu, D. Paterson, C. Petersen, and J. Gealow, “A 12b 10GS/s interleaved pipeline ADC in 28nm CMOS technology,” IEEE ISSCC Dig. Tech. Papers, pp. 288-289, Feb. 2017. [35]C.-Y. Lin, Y.-H. Wei, and T.-C. Lee, “A 10b 2.6GS/s time-interleaved SAR ADC with background timing-skew calibration,” IEEE ISSCC Dig. Tech. Papers, pp. 468-469, Feb. 2016. [36]L. Kull, J. Pliva, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Brandli, M. Kossel, T. Morf, T. M. Andersen, and Y. Leblebici, “Implementation of Low-Power 6-8 b 30-90 GS/s Time-Interleaved ADCs With Optimized Input Bandwidth in 32 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, pp. 636-648, Mar. 2016. [37]C.-C. Huang, C.-Y. Wang, and J.-T. Wu, “A CMOS 6-Bit 16-GS/s Time-Interleaved ADC Using Digital Background Calibration Techniques,” IEEE J. Solid-State Circuits, vol. 46, pp. 848-858, Mar. 2011. [38]Ameya Bhide, “Design of High-Speed Time-Interleaved Delta-Sigma D/A Converters,” Department of Electrical Engineering Linkoping University, Linkoping, Sweden, 2015. [Online]. Available: https://old.liu.se/elliit/artiklar-3/1.741851/AmeyaBhide.pdf [39]S. Verma, A. Kasapi, L.-M. Lee, D. Liu, D. Loizos, S.-H. Paik, A. Varzaghani, S. Zogopoulos, and S. Sidiropoulos, “A 10.3GS/s 6b flash ADC for 10G Ethernet applications,” IEEE ISSCC Dig. Tech. Papers, pp. 462-463, Feb. 2013. [40]X. Zheng, Z. Wang, F. Li, F. Zhao, S. Yue, C. Zhang, and Z. Wang, “A 14-bit 250 MS/s IF Sampling Pipelined ADC in 180 nm CMOS Process,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 9, pp. 1381-1392, Aug. 2016. [41]Y.-S. Shu and B.-S. Song, “A 15-bit Linear 20-MS/s Pipelined ADC Digitally Calibrated With Signal-Dependent Dithering,” IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 342-350, Feb. 2008. [42]J. Robert and P. Deval, “A second-order high-resolution incremental A/D converter with offset and charge injection compensation,” IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 736-741, Mar. 1988. [43]K. Yoshioka, R. Saito, T. Danjo, S. Tsukamoto, and H. Ishikuro, “Dynamic Architecture and Frequency Scaling in 0.8–1.2 GS/s 7 b Subranging ADC,” IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 932-945, Apr. 2015. [44]Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-Bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 3, pp. 570-581, Nov. 2013. [45]F. van der Goes, C. Ward, S. Astgimath, H. Yan, J. Riley, J. Mulder, S. Wang, and K. Bult, “A 1.5mW 68dB SNDR 80MS/s 2× interleaved SAR-assisted pipelined ADC in 28nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 200-201, Feb. 2014. [46]J. A. Fredenburg and M. P. Flynn, "A 90-MS/s 11-MHz-Bandwidth 62-dB SNDR Noise-Shaping SAR ADC," IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2898-2904, Dec. 2012. [47]Z. Chen, M. Miyahara, and A. Matsuzawa, "A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC," IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C64-C65, Jun. 2015. [48]W. Guo and N. Sun, "A 12b-ENOB 61μW noise-shaping SAR ADC with a passive integrator," IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 405-408, Sep. 2016. [49]C.-C. Liu and M. Huang, "A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter," IEEE ISSCC Dig. Tech. Papers, pp. 466-467, Feb. 2017. [50]Y.-S. Shu, L.-T. Kuo, and T.-Y. Lo, "An Oversampling SAR ADC with DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2928-2940, Dec. 2016. [51]W.-J. Wang, “A 10MS/s Noise Shaping Successive-Approximation Register Analog-to-Digital Converter Based on an LSB-Cap-Reusing Sub-range Architecture,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University master dissertation, Feb. 2019. [52]Y.-S. Hu, C.-H. Shih, H.-W. Chen, and H.-S. Chen, “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40nm CMOS,” IEEE A-SSCC Dig. Tech. Papers, pp. 81-84, Nov. 2014. [53]Y.-S. Hu, K.-Y. Lin, and H.-S. Chen, “A 12-bit 200kS/s subranging SAR ADC with an energy-curve reshape technique,” IEEE A-SSCC Dig. Tech. Papers, pp. 149-152, Nov. 2016. [54]Y.-S. Hu, K.-Y. Lin, and H.-S. Chen, "A 510nW 12-bit 200kS/s SAR-assisted SAR ADC using a re-switching technique," IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C238-C239, Jun. 2017. [55]Y.-S. Hu, L.-Y. Huang, and H.-S. Chen, “A 0.6V 1.63fJ/c.-s. Detective Open-Loop Dynamic System Buffer for SAR ADC in Zero-Capacitor TDDI System,” IEEE A-SSCC Dig. Tech. Papers, pp. 103-106, Nov. 2018. [56]G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “10-bit 30-MS/s SAR ADC Using a Switchback Switching Method,” IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, vol. 21, no. 3, pp. 584-588, Mar. 2013. [57]S. B.-Mashhadi and R. Lotfi, "Analysis and Design of a Low-Voltage Low-Power Double-Tail Comparator," IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, vol. 22, no. 2, pp. 343-352, Feb. 2014. [58]M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9μW at 1 MS/s,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010. [59]T. Sepke, P. Holloway, C. G. Sodini, and H. S. Lee, “Noise analysis for comparator-based circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 3, pp. 541-553, Mar. 2009. [60]Probability and stochastic processes, 2rd ed., John Wiley & Sons Inc., Roy D. Yates and David J. Goodman, 2005. [61]B. Wicht, T. Nirschl, and D. S.-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, Jul. 2004. [62]J.-H. Shieh, M. Patil, and B.J. Sheu, “Measurement and analysis of charge injection in MOS analog switches,” IEEE Journal of Solid-State Circuits, vol. 22, no. 2, pp. 277-281, Feb. 1987. [63]Advances in Analog and RF IC Design for Wireless Communication Systems, 1st ed., Academic Press, D. W. Leenaerts and G. Manganaro, Chapter 9, May 2013. [64]Design of Analog CMOS Integrated Circuits, 1st ed., McGraw-Hill Education, B. Razavi, Aug. 15, 2000. [65]M.-T. Yang, “Low-Skew High-Speed Low-Power Four-Channel Time-Interleaved SAR ADC,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University master dissertation, Oct. 2016. [66]F. Kuttner, “A 1.2V 10b 20MSample/s Non-Binary Successive Approximation ADC in 0.13μm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 176-177, Feb. 2002. [67]C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with,” IEEE ISSCC Dig. Tech. Papers, pp. 386-387, Feb. 2010. [68]Y.-S. Hu, J.-H. Lin, D.-G. Lin, K.-Y. Lin, H.-S. Chen, “An 89.55dB-SFDR 179.6dB-FoMs 12-bit l MS/s SAR-Assisted SAR ADC with Weight-Split Compensation Calibration,” IEEE A-SSCC Dig. Tech. Papers, pp. 253-256, Nov. 2018. [69]F.-J. Chiang, “All Digital Calibration for High-Resolution Successive-Approximation Register Analog-to-Digital Converter,” Graduate Institute of Electronics Engineering College of Electrical Engineering & Computer Science National Taiwan University master dissertation, Jan. 2019. [70]G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-μW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications,” IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012. [71]P. J. A. Harpe, C. Zhou, Y. Bi, N. P. van der Meijs, X. Wang, K. Philips, G. Dolmans, and H. de Groot, “A 26μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios,” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1585-1595, Jul. 2011. [72]W.-H. Tseng, W.-L. Lee, C.-Y. Huang, and Pao-Cheng Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, Oct. 2016. [73]M. Anis, “Subthreshold leakage current: challenges and solutions,” IEEE International Conference on Fuzzy Systems, pp. 77-80, Dec. 2003. [74]B.P. Ginsburg and A.P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 184-187, May 2005. [75]M. Yip and A. P. Chandrakasan, “A Resolution-Reconfigurable 5-to-10b 0.4-to-1V Power Scalable SAR ADC,” IEEE ISSCC Dig. Tech. Papers, pp. 190-191, Feb. 2011. [76]V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” IEEE Electronics Letters, vol. 46, no. 9, pp. 620-621, Apr. 2010. [77]C.-E. Hsieh and S.-I. Liu, “A 0.3V 10bit 7.3fJ/conversion-step SAR ADC in 0.18μm CMOS,” IEEE A-SSCC Dig. Tech. Papers, pp. 325-328, Nov. 2014. [78]C.-H. Kuo and C.-E. Hsieh, “A high energy-efficiency SAR ADC based on partial ?oating capacitor switching technique,” IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 475-478, Sep. 2011. [79]Y. Lim and M. P. Flynn, “A 1mW 71.5dB SNDR 50MS/S 13b fully differential ring-amplifier-based SAR-assisted pipeline ADC,” IEEE ISSCC Dig. Tech. Papers, pp. 458-459, Feb. 2015. [80]S.-W. (Michael) Chen, and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006. [81]P. Harpe, E. Cantatore, and A. van Roermund, “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” IEEE ISSCC Dig. Tech. Papers, pp. 270-271, Feb. 2013. [82]M. Ding, P. Harpe, Y.-H. Liu, B. Busze, K. Philips, and H. de Groot, “A 5.5fJ/conv-step 6.4MS/s 13b SAR ADC Utilizing a Redundancy-Facilitated Background Error-Detection-and-Correction Scheme,” IEEE ISSCC Dig. Tech. Papers, pp. 458-459, Feb. 2015. [83]M.-H. Wu, Y.-H. Chung, and H.-S. Li, “A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC using Capacitor-Swapping Technique,” IEEE A-SSCC Dig. Tech. Papers, pp. 157-160, Nov. 2012. [84]P. Harpe, E. Cantatore, and A. van Roermund, “An Oversampled 12/14b SAR ADC with Noise Reduction and Linearity Enhancements Achieving up to 79.1dB SNDR,” IEEE ISSCC Dig. Tech. Papers, pp. 194-195, Feb. 2014. [85]T. Miki, T. Morie, K. Matsukawa, Y. Bando, T. Okumoto, K. Obata, S. Sakiyama, and S. Dosho, “A 4.2mW 50MS/s 13bit CMOS SAR ADC With SNR and SFDR Enhancement Techniques,” IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1372-1381, Jun. 2015. [86]P.-C. Huang, Y.-S. Hu, H.-Y. Tai, and H.-S. Chen, “An 8-bit 900MS/s Two-Step SAR ADC,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2898-2898, May 2016. [87]S.-E. Hsieh and C.-C. Hsieh, “A 0.44fJ/conversion-step 11b 600KS/s SAR ADC with semi-resting DAC,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C160-C161, Jun. 2016. [88]W. Liu, P. Huang, and Y. Chiu, “A 12-bit 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibration,” IEEE Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2661-2672, Nov. 2011. [89]J. Shen, A. Shikata, A. Liu, and F. Chalifoux, “A 12-bit 31.1uW 1MS/s SAR ADC with On-Chip Input-Signal-Independent Calibration Achieving 100.4dB SFDR using 256fF Sampling Capacitance” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C91-C92, Jun. 2018. [90]Y. Zhou, B. Xu, and Y. Chiu, “A 12 bit 160 MS/s Two-Step SAR ADC With Background Bit-Weight Calibration Using a Time-Domain Proximity Detector,” IEEE Journal of Solid-State Circuits, pp. 920-931, Apr. 2015. [91]H. S. Lee, D. A. Hodges, and P. R. Gray, “A self-calibrating 15 bit CMOS A/D converter,” IEEE Journal of Solid-State Circuits, vol. 19, no. 6, pp. 813-819, Dec. 1984. [92]J.-Y. Um, Y.-J. Kim, E.-W. Song, J.-Y. Sim, and H.-J. Park, “A Digital domain calibration of split-capacitor DAC for a differential SAR ADC without additional analog circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 11, pp. 2845-2856, Nov. 2013. [93]D.-J. Chang, W. Kim, M.-J. Seo, H.-K. Hong, and S.-T. Ryu, “Normalized-Full-Scale-Referencing Digital-Domain Linearity Calibration for SAR ADC,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 322-332, Jan. 2017. [94]Y. Zhu, C.-H. Chan, S.-P. U, and R. P. Martins, “An 11b 450 MS/s Three-Way Time-Interleaved Subranging Pipelined-SAR ADC in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 51, no. 5, pp. 1223-1234, May 2016. [95]B.-R.-S. Sung, C.-K. Lee, W. Kim, J.-I. Kim, H.-K. Hong, G.-G. Oh, C.-H. Lee, M. Choi, H.-J. Park, and S.-T. Ryu, “A 6 bit 2 GS/s flash-assisted time-interleaved (FATI) SAR ADC with background offset calibration,” IEEE A-SSCC Dig. Tech. Papers, pp. 281-284, Nov. 2013. [96]W. Li, F. Li, J. Liu, H. Li, and Z. Wang, “A 13-bit 160MS/s pipelined subranging-SAR ADC with low-offset dynamic comparator,” IEEE A-SSCC Dig. Tech. Papers, pp. 225-228, Nov. 2017. [97]Z. Chen, M. Miyahara, and A. Matsuzawa, “A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain,” IEEE A-SSCC Dig. Tech. Papers, pp. 309-312, Nov. 2016. [98]W. Guo, H. Zhuang, and N. Sun, “A 13b-ENOB 173dB-FoM 2nd-order NS SAR ADC with passive integrators,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C236-C237, Jun. 2017. [99]Y.-Z. Lin, C.-H. Tsai, S.-C. Tsou, R.-X. Chu, and C.-H. Lu, “A 2.4-mW 25-MHz BW 300-MS/s passive noise shaping SAR ADC with noise quantizer technique in 14-nm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C234-C235, Jun. 2017. [100]A. Boukhayma and C. Enz, “A new method for kTC noise analysis in periodic passive switched-capacitor networks,” IEEE New Circuits and Systems Conference (NEWCAS), pp. 1-4, Jun. 2015. [101]M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” IEEE A-SSCC Dig. Tech. Papers, pp. 269-272, Nov. 2008. [102]R. Kapusta, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 472-473, Feb. 2013. [103]M. J. Kramer, E. Janssen, K. Doris, and B. Murmann, “A 14 b 35 MS/s SAR ADC Achieving 75 dB SNDR and 99 dB SFDR With Loop-Embedded Input Buffer in 40 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2891-2900, Dec. 2015. [104]M. Shim, S. Jeong, P. Myers, S. Bang, C. Kim, D. Sylvester, D. Blaauw, and W. Jung, “An oscillator collapse-based comparator with application in a 74.1dB SNDR, 20KS/s 15b SAR ADC,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C158-C159, Jun. 2016. [105]G.-H. (Tony) Chen, private communication, “The Application and Market of TDDI,” Sitronix Technology Cooperation, Oct. 2018. [106]M.-N. Liao, “Area-Saving Driving Circuit for Display Panel,” U.S. Patent 0 049 459, Feb. 20, 2014. [107]M. Liu, P. Harpe, R. van Dommele, and A. van Roermund, “A 0.8V 10b 80kS/s SAR ADC with duty-cycled reference generation,” IEEE ISSCC Dig. Tech. Papers, pp. 278-279, Feb. 2015. [108]M. Ho, K.-N. Leung, and K.-L. Mak, “A Low-Power Fast-Transient 90-nm Low-Dropout Regulator With Multiple Small-Gain Stages,” IEEE Journal of Solid-State Circuits, vol. 45, no. 11, pp. 2466-2475, Nov. 2010. [109]Y.-Z. Lin, C.-H. Tsai, S.-C. Tsou, and C.-H. Lu, “A 8.2-mW 10-b 1.6-GS/s 4× TI SAR ADC with Fast Reference Charge Neutralization and Background Timing-Skew Calibration in 16-nm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C204-C205, Jun. 2016. [110]Y.-S. (Dean) Hu, C.-K. (Copa) Wu, and C.-J. (Daniel) Tung, “Noise Suppression Circuit,” U.S. Patent 0 285 862, Oct. 5, 2017. [111]J. Shen, A. Shikata, L. Fernando, N. Guthrie, B. Chen, M. Maddox, N. Mascarenhas, R. Kapusta, and M. Coln, “A 16-bit 16MS/s SAR ADC with On-Chip Calibration in 55nm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C282-C283, Jun. 2017. [112]C. Li, C.-H. Chan, Y. Zhu and R. P. Martins, “Analysis of Reference Error in High-Speed SAR ADCs With Capacitive DAC,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 82-93, Jan. 2019. [113]Y.-J. Chen and C.-C. Hsieh, “A 0.4V 2.02fJ/Conversion-step 10-bit Hybrid SAR ADC with Time-domain Quantizer in 90nm CMOS,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C35-C36, Jun. 2014. [114]M. Liu, A. H. M. van Roermund and P. Harpe, “A 10-b 20-MS/s SAR ADC With DAC-Compensated Discrete-Time Reference Driver,” IEEE Journal of Solid-State Circuits, vol. 54, no. 2, pp. 417-427, Feb. 2019. [115]G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” IEEE A-SSCC Dig. Tech. Papers, pp. 289-292, Nov. 2013. [116]S.-H. Wan, C.-H. Kuo, S.-J. Chang, G.-Y. Huang, C.-P. Huang, G. J. Ren, K.-T. Chiou, and C.-H. Ho, “A 10-bit 50-MS/s SAR ADC with techniques for relaxing the requirement on driving capability of reference voltage buffers,” IEEE A-SSCC Dig. Tech. Papers, pp. 293-296, Nov. 2013. [117]S.-K. Lee, S.-J. Park, H.-J. Park, and J.-Y. Sim, “A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface,” IEEE Journal of Solid-State Circuits, vol. 46, no. 3, pp. 651-659, Mar. 2011. [118]L. Kull, and T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, T. M. Andersen, and Y. Leblebici, “A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 468-469, Feb. 2013. [119]Y. Duan and E. Alon, “A 12.8 GS/s Time-Interleaved ADC With 25 GHz Effective Resolution Bandwidth and 4.6 ENOB,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1725-1738, Aug. 2014. [120]Y. Zhu, C.-H. Chan, S.-P. U, and R.P. Martins, “An 11b 900 MS/s time-interleaved sub-ranging pipelined-SAR ADC,” IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 211-214, Sep. 2014. [121]C.-H. Chan, Y. Zhu, S.-W. Sin, S.-P. U, and R.P. Martins, “A 3.8mW 8b 1GS/s 2b/cycle interleaving SAR ADC with compact DAC structure,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C86-C87, Jun. 2012. [122]H.-K. Hong, W. Kim, H.-W. Kang, S.-J. Park, M. Choi, H.-J. Park, and Seung-Tak Ryu, “A Decision-Error-Tolerant 45 nm CMOS 7b 1 GS/s Nonbinary 2b/Cycle SAR ADC,” IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 543-555, Feb. 2015. [123]Y.-S. Hu, L.-Y. Huang, and H.-S. Chen, “A 0.6V 1.63fJ/c.-s. Detective Open-Loop Dynamic System Buffer for SAR ADC in Zero-Capacitor TDDI System,” IEEE Journal of Solid-State Circuits Early Access, 2019. [124]C.-Y. Wang and J.-T. Wu, “A Multiphase Timing-Skew Calibration Technique Using Zero-Crossing Detection,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 6, pp. 1102-1114, Jun. 2009. [125]C.-Y. Wang and J.-T. Wu, “A background timing-skew calibration technique for time-interleaved analog-to-digital converters,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 4, pp. 299-303, Apr. 2006. [126]C.-C. Huang, C.-Y. Wang, and J.-T. Wu, “A CMOS 6-Bit 16-GS/s Time-Interleaved ADC Using Digital Background Calibration Techniques,” IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 848-858, Apr. 2011. [127]H. Wei, P. Zhang, B. D. Sahoo, and B. Razavi, “An 8-Bit 4-GS/s 120-mW CMOS ADC,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1751-1761, Aug. 2014. [128]N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 3, pp. 261-271, Mar. 2001. [129]Y.-C. Lien, “A 14.6mW 12b 800MS/s 4×time-interleaved pipelined SAR ADC achieving 60.8dB SNDR with Nyquist input and sampling timing skew of 60fsrms without calibration,” IEEE Symposium on VLSI Circuits (VLSI Circuits), pp. C156-C157, Jun. 2016. [130]I-N. Ku, Z. Xu, Y.-C. Kuan, Y.-H. Wang, and M.-C. (Frank) Chang, “A 40-mW 7-bit 2.2-GS/s Time-Interleaved Subranging CMOS ADC for Low-Power Gigabit Wireless Communications,” IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1854-1865, Aug. 2012. [131]H.-K. Hong, H.-W. Kang, D.-S. Jo, D.-S. Lee, Y.-S. You, Y.-H. Lee, H.-J. Park, and S.-T. Ryu, “A 2.6b/cycle-architecture-based 10b 1 GS/s 15.4mW 4×-time-interleaved SAR ADC with a multistep hardware-retirement technique,” IEEE ISSCC Dig. Tech. Papers, pp. 470-471, Feb. 2015. [132]S. Lee, A. P. Chandrakasan, and H.-S. Lee, “A 1 GS/s 10b 18.9 mW Time-Interleaved SAR ADC With Background Timing Skew Calibration,” IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2846-2856, Dec. 2014. [133]S. M. Louwsma, A. J. M. van Tuijl, M. Vertregt, and B. Nauta, “A 1.35 GS/s, 10 b, 175 mW Time-Interleaved AD Converter in 0.13 μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 778-786, Apr. 2008. [134]B.-R.-S. Sung, D.-S. Jo, I.-H. Jang, D.-S. Lee, Y.-S. You, Y.-H. Lee, H.-J. Park, and S.-T. Ryu, “A 21fJ/conv-step 9 ENOB 1.6GS/S 2× time-interleaved FATI SAR ADC with background offset and timing-skew calibration in 45nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 464-465, Feb. 2015.
|