|
[1] S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann. Exact price of anarchy for polynomial congestion games. SIAM Journal on Computing, 40(5):1211–1233, 2011. [2] E. Altman, T. Basar, T. Jimenez, and N. Shimkin. Competitive routing in networks with polynomial costs. IEEE Transactions on automatic control, 47(1):92–96, 2002. [3] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. The price of stability for network design with fair cost allocation. SIAM Journal on Computing, 38(4):1602–1623, 2008. [4] B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 57–66. ACM, 2005. [5] U. Bhaskar and P. R. Lolakapuri. Equilibrium computation in atomic splittable routing games. In 26th Annual European Symposium on Algorithms (ESA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. [6] S.-F. Cheng, D. M. Reeves, Y. Vorobeychik, and M. P. Wellman. Notes on equilibria in symmetric games. 2004. [7] G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 67–73. ACM, 2005. [8] R. Cominetti, J. R. Correa, and N. E. Stier-Moses. The impact of oligopolistic competition in networks. Operations Research, 57(6):1421–1437, 2009. [9] A. Epstein, M. Feldman, and Y. Mansour. Efficient graph topologies in network routing games. Games and Economic Behavior, 66(1):115–125, 2009. [10] D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. Theoretical Computer Science, 348(2-3):226–239, 2005. [11] T. Harks. Stackelberg strategies and collusion in network games with splittable flow. Theory of Computing Systems, 48(4):781–802, 2011. [12] A. Hayrapetyan, É. Tardos, and T. Wexler. The effect of collusion in congestion games. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 89–98. ACM, 2006. [13] P. Kleer and G. Schäfer. Potential function minimizers of combinatorial congestion games: Efficiency and computation. In Proceedings of the 2017 ACM Conference on Economics and Computation, pages 223–240. ACM, 2017. [14] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Annual Symposium on Theoretical Aspects of Computer Science, pages 404–413. Springer, 1999. [15] A. Orda, R. Rom, and N. Shimkin. Competitive routing in multi-user communication networks. In IEEE INFOCOM’93 The Conference on Computer Communications, Proceedings, pages 964–971. IEEE, 1993. [16] A. Pigou. The economics of welfare. Routledge, 2017. [17] T. Pradeau, F. Meunier, and R. Gupta. Bounding the price of anarchy for games with player-specific cost functions. 2014. [18] R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. International Journal of Game Theory, 2(1):65–67, 1973. [19] T. Roughgarden. The price of anarchy is independent of the network topology. Journal of Computer and System Sciences, 67(2):341–364, 2003. [20] T. Roughgarden. Selfish routing and the price of anarchy , volume 174. MIT press Cambridge, 2005. [21] T. Roughgarden and F. Schoppmann. Local smoothness and the price of anarchy in splittable congestion games. Journal of Economic Theory, 156:317–342, 2015. [22] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM (JACM), 49(2):236–259, 2002. [23] T. Roughgarden and É. Tardos. Bounding the inefficiency of equilibria in nonatomic congestion games. Games and economic behavior, 47(2):389–403, 2004. [24] C. Wan. Coalitions in nonatomic network congestion games. Mathematics of Operations Research, 37(4):654–669, 2012. [25] J. G. Wardrop. Road paper. some theoretical aspects of road traffic research. Proceedings of the institution of civil engineers, 1(3):325–362, 1952.
|