|
[1]B. Peder, M. Henrik, and N. H. Aalborg, “Online short-term solar power forecasting,”Solar Energy, vol. 83, pp. 1772-1783, May. 2009. [2]Y. Li, Y. Su, and L. Shu, “An ARMAX model for forecasting the power output of a grid connected photovoltaic system,” Reneweable Energy, No. 66, pp. 78-89, 2014 [3] H.-T. Yang, C.-M.Huang, and Y.-S,Huang, “A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 917-926, Jul. 2014 [4]U.K. Das, K.S. Tey, M.Seyedmahmoudian, M.Y.I. Idris, S. Mekhilef, B. Horan, and A. Stojcevski, “SVR-based model to forecast PV power generation under different weather conditions,” Energies, vol. 10, no. 7, Article number:876, June. 2017 [5]J. Zeng and W. Qiao “Shout-term solar power prediction using support vector machine, ” Renewable Energy, vol. 52,pp. 118-127, 2013 [6]J. Shi, W. J. Lee, Y. Liu, Y. Yang, and P. Wang, “Forecasting power output of photovoltaic systems based on weather classification and support vector machine,” IEEE Trans. Industry Application, vol. 48, no. 3, pp. 1064-1069, May. 2012 [7]M.W. Ahmad, M. Mourshed, and Y. Rezgui, “Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression, ” Energy, vol. 164, pp. 465-474, 2018 [8]B. Jing, Z. Qian, Y. Pei, and J. Wang, “Ultra short-term PV power forecasting based on ELM segmentation,” J. Eng, vol. 2017,lss. 13, pp. 2564-2568, 2017 [9]A. Gensler, J. Henze, and B. Sick, “Deep learning for solar power forecasting an approach using autoencoder and LSTM neural network,” IEEE International Conference on System, Oct. 2016 [10]K.Y. Bae, H.S. Jang, and D.K. Sung, “Hourly solar irradiance prediction based on support vector machine and its error analysis, ” IEEE Trans. Power System, vol. 32, no. 2, pp. 935-945, Mar. 2017 [11]A. Mellit, and A. M. Pavan, “A 24-h forecast of solar irradiance using artificial neural network:application for performance prediction of a grid-connected PV plant at Trieste,Italy, ” Solar Energy, vol. 84, pp. 807-821, 2010 [12]A. Alzahrani, P. Shamsi, C. Dagli, and M. Ferdowsi, “Solar irradiance forecasting using deep neural networks,” Procedia Computer Science, No. 114, 2017 [13]J.R. Andrade, and R.J. Bessa, “Improving renewable energy forecasting with a grid of numerical weather prediction,” IEEE Tran. Sustainable Energy, vol. 8, NO. 4, pp. 1571-1580, Oct. 2017 [14]C. Voyant, G. Notton, S. Kalogirou, M. Nivet, C. Paoli, F. Mottem, and A. Fouilloy, “Machine learning methods for solar radiation forecasting: A review,” Renewable Energy, vol. 105, pp. 569-582, 2017 [15]A. J. Smola, and B. Scholkopf , “A tutorial on support vector regression,” vol. 14, Statistics and Computing, vol. 14, pp. 199-222, 2004 [16]林軒田,機器學習基石[Online] https://zh-tw.coursera.org/learn/ntumlone-mathematicalfoundations [17]C.-C. Chang, and C.-J. Lin, “LibSVM: A library for support vector machines,” Acm Trans. Inyell. Syst. Techil., vol. 2, no. 3, 2011, [18] D. Cournapeau , Python Scikit-learn [Online]: https://scikit-learn.org/stable/ [19] J. Perktold, S. Seabold and J. Taylor, Python Stastmodels[Online]: https://www.statsmodels.org/stable/index.html [20]中央氣象局觀測資料查詢[Online]: http://e-ervice.cwb.gov.tw/HistoryDataQuery/index.jsp [21] Python Keras[Online] : https://keras.io/ [22]L. Richardson, Python BeautifulSoup[Online]: https://www.crummy.com/software/BeautifulSoup/bs4/doc/ [23]台灣電力公司機組發電量[Online]: https://www.taipower.com.tw/d006/loadGraph/loadGraph/genshx_.html [24]中央氣象局即時觀測資料[Online]: https://www.cwb.gov.tw/V7/observe/ [25]中央氣象局未來天氣預報[Online]: https://www.cwb.gov.tw/V7/forecast/ [26]台大大氣系,台大天氣資料[Omline]: http://www.as.ntu.edu.tw/ [27]P. Ineichen, “A broadband simplified of the Solis clear sky model,” Solar Energy, vol. 82, pp. 758-762, 2008 [28]R. Marquez, and C. F.M. Coimbra, “Intra-hour DNI forecasting based on cloud tracking image analysis,” Solar Energy, vol. 91, pp. 327-336, 2013 [29]H. T.C. Pedro and C. F.M. Coimbra “Nearst-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances,” Reneweable Energy, No. 80, pp. 770-782, 2015
|