|
[1] R. A. Adams and J. J. Fournier. Sobolev spaces, volume 140. Elsevier, 2003. [2] V. I. Agoshkov. Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation. In Dokl. Akad. Nauk SSSR, volume 276, pages 1289–1293, 1984. [3] R. E. Caflisch. The boltzmann equation with a soft potential. Communications in Mathematical Physics, 74(1):71–95, 1980. [4] C. Cercignani, R. Illner, and M. Pulvirenti. The mathematical theory of dilute gases, volume 106. Springer Science & Business Media, 2013. [5] M. Cessenat. Th´eoremes de trace lp pour des espaces de fonctions de la neutronique. Comptes rendus des s´eances de l’Acad´emie des sciences. S´erie 1, Math´ematique, 299(16):831–834, 1984. [6] M. Cessenat and R. DAUTRAY. Th´eoremes de trace pour des espaces de fonctions de la neutronique. Comptes rendus des s´eances de l’Acad´emie des sciences. S´erie 1, Math´ematique, 300(3):89–92, 1985. [7] I.-K. Chen. Regularity of stationary solutions to the linearized boltzmann equations. SIAM Journal on Mathematical Analysis, 50(1):138–161, 2018. [8] I.-K. Chen, C.-H. Hsia, and D. Kawagoe. Regularity for diffuse reflection boundary problem to the stationary linearized boltzmann equation in a convex domain. In Annales de l’Institut Henri Poincar´e C, Analyse non lin´eaire. Elsevier, 2018. [9] L. Desvillettes. About the use of the fourier transform for the boltzmann equation. Riv. Mat. Univ. Parma, 7(2):1–99, 2003. [10] R. DeVore and G. Petrova. The averaging lemma. Journal of the American Mathematical Society, 14(2):279–296, 2001. [11] E. DI NEZZA, G. PALATUCCI, and E. VALDINOCI. Hitchhiker’s guide to the fractional sobolev spaces. arXiv preprint arXiv:1104.4345, 2011. [12] R. J. DiPerna and P.-L. Lions. On the cauchy problem for boltzmann equations: global existence and weak stability. Annals of Mathematics, pages 321–366, 1989. [13] R. J. DiPerna, P.-L. Lions, and Y. Meyer. Lp regularity of velocity averages. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 8, pages 271–287. Elsevier, 1991. [14] L. C. Evans. Partial differential equations. American Mathematical Society, Providence, R.I., 2010. [15] F. Golse. Un r´esultat pour les ´equations de transport et application au calcul de la limite de la valeur propre principale d’un op´erateur de transport. Note CR Acad. Sci. Paris, 301:341–344, 1985. [16] F. Golse, P.-L. Lions, B. Perthame, and R. Sentis. Regularity of the moments of the solution of a transport equation. Journal of functional analysis, 76(1):110–125, 1988. [17] H. Grad. Asymptotic theory of the boltzmann equation. The physics of Fluids, 6(2):147–181, 1963. [18] P.-E. Jabin. Averaging lemmas and dispersion estimates for kinetic equations. Rivista di Matematica della Universita di Parma, contribution to the special issue devoted to the Summer School, 2008. [19] P.-E. Jabin and B. Perthame. Regularity in kinetic formulations via averaging lemmas. ESAIM: Control, Optimisation and Calculus of Variations, 8:761–774, 2002. [20] D. Kawagoe. Regularity of solutions to the stationary transport equation with the incoming boundary data. 2018. [21] T.-P. Liu and S.-H. Yu. The green’s function and large-time behavior of solutions for the one-dimensional boltzmann equation. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(12):1543–1608, 2004. [1] R. A. Adams and J. J. Fournier. Sobolev spaces, volume 140. Elsevier, 2003. [2] V. I. Agoshkov. Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation. In Dokl. Akad. Nauk SSSR, volume 276, pages 1289–1293, 1984. [3] R. E. Caflisch. The boltzmann equation with a soft potential. Communications in Mathematical Physics, 74(1):71–95, 1980. [4] C. Cercignani, R. Illner, and M. Pulvirenti. The mathematical theory of dilute gases, volume 106. Springer Science & Business Media, 2013. [5] M. Cessenat. Th´eoremes de trace lp pour des espaces de fonctions de la neutronique. Comptes rendus des s´eances de l’Acad´emie des sciences. S´erie 1, Math´ematique, 299(16):831–834, 1984. [6] M. Cessenat and R. DAUTRAY. Th´eoremes de trace pour des espaces de fonctions de la neutronique. Comptes rendus des s´eances de l’Acad´emie des sciences. S´erie 1, Math´ematique, 300(3):89–92, 1985. [7] I.-K. Chen. Regularity of stationary solutions to the linearized boltzmann equations. SIAM Journal on Mathematical Analysis, 50(1):138–161, 2018. [8] I.-K. Chen, C.-H. Hsia, and D. Kawagoe. Regularity for diffuse reflection boundary problem to the stationary linearized boltzmann equation in a convex domain. In Annales de l’Institut Henri Poincar´e C, Analyse non lin´eaire. Elsevier, 2018. [9] L. Desvillettes. About the use of the fourier transform for the boltzmann equation. Riv. Mat. Univ. Parma, 7(2):1–99, 2003. [10] R. DeVore and G. Petrova. The averaging lemma. Journal of the American Mathematical Society, 14(2):279–296, 2001. [11] E. DI NEZZA, G. PALATUCCI, and E. VALDINOCI. Hitchhiker’s guide to the fractional sobolev spaces. arXiv preprint arXiv:1104.4345, 2011. [12] R. J. DiPerna and P.-L. Lions. On the cauchy problem for boltzmann equations: global existence and weak stability. Annals of Mathematics, pages 321–366, 1989. [13] R. J. DiPerna, P.-L. Lions, and Y. Meyer. Lp regularity of velocity averages. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 8, pages 271–287. Elsevier, 1991. [14] L. C. Evans. Partial differential equations. American Mathematical Society, Providence, R.I., 2010. [15] F. Golse. Un r´esultat pour les ´equations de transport et application au calcul de la limite de la valeur propre principale d’un op´erateur de transport. Note CR Acad. Sci. Paris, 301:341–344, 1985. [16] F. Golse, P.-L. Lions, B. Perthame, and R. Sentis. Regularity of the moments of the solution of a transport equation. Journal of functional analysis, 76(1):110–125, 1988. [17] H. Grad. Asymptotic theory of the boltzmann equation. The physics of Fluids, 6(2):147–181, 1963. [18] P.-E. Jabin. Averaging lemmas and dispersion estimates for kinetic equations. Rivista di Matematica della Universita di Parma, contribution to the special issue devoted to the Summer School, 2008. [19] P.-E. Jabin and B. Perthame. Regularity in kinetic formulations via averaging lemmas. ESAIM: Control, Optimisation and Calculus of Variations, 8:761–774, 2002. [20] D. Kawagoe. Regularity of solutions to the stationary transport equation with the incoming boundary data. 2018. [21] T.-P. Liu and S.-H. Yu. The green’s function and large-time behavior of solutions for the one-dimensional boltzmann equation. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(12):1543–1608, 2004.
|