跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳凱麟
研究生(外文):Kai-Lin Wu
論文名稱:移動式自動化神經發展治療步態訓練機之研發
論文名稱(外文):The Development of a Movable Automatic Gait Rehabilitation Devices for Neuro-Developmental Treatment
指導教授:王富正
口試委員:顏家鈺蔡明祺游忠煌
口試日期:2018-08-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:144
中文關鍵詞:神經發展治療步態中風強韌控制馬達控制慣性測量元件
DOI:10.6342/NTU201800626
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要針對中風患者在步行上的復健,開發出一套移動式自動化NDT步態訓練機。NDT在中風復健中為一種十分有效的步態訓練方式,可透過各種支撐、誘發、引導與抑制等手法來對患者進行步行能力上的復健。但對於治療師而言,此種方式不僅耗時、費力,無法給予患者大量的復健治療;且僅能在特定可跟隨治療的步行速度與空間範圍內進行復健,此將減緩患者在復健上的質與量。故本論文擬開發一套移動式自動化NDT步態訓練機,以降低治療師的負擔,並同時增加患者在後期有效復健的訓練時間,以提升NDT步態訓練之效果。
首先,本研究將開發一套穿戴式步態偵測系統,以對受測者在行走時的步態相位進行偵測。此系統功能之實現,除了可在後續步態訓練過程中給予治療時機點的即時判斷,亦可作為受測者步態情況的分析依據。然後透過取得並分析治療師對患者進行復健時的各項運動與力量資訊,以將臨床上的know-how進行工程上的轉譯。最後再搭配所建立馬達訓練系統,完成整個步態訓練的手法與過程。為了能讓馬達訓練系統提供良好的系統響應,本論文使用系統識別的方式來建立數學模型,並針對此系統模型設計強韌控制器,以模擬治療師對患者的施力軌跡。
在論文的最後,本研究成功將前述所發展的各子系統與機構進行整合與控制,達到NDT步態訓練在工程中於受測者行走方向上腰部關鍵點的自動化,並透過對此移動式自動化NDT步態訓練機進行測試、分析,成功驗證其對受測者在步態訓練的初步效果。
This thesis proposes the development of a movable automatic gait rehabilitation device for Neuro-Developmental Treatment (NDT) that can assist stroke patients on the rehabilitation for walking ability. NDT is an effective rehabilitation method for stroke patients, because it can let patients have the feeling on walking with minimal physical intervention. However, it is very labor-intensive and time-consuming for therapists. In addition, traditional NDT training needs to be conducted in limited space with specific speeds. Consequently, stroke patients cannot receive sufficient training for walking ability. Therefore, this thesis develops a movable automatic gait trainer to relief therapists’ working load and increase patients’ training time.
First, we develop a wearable gait detection system to detect subjects’ gait phase statuses during walking. This detecting system can provide right timing for NDT training, and the recorded data can be used for gait analysis in the future. Second, we obtain subjects’ motions and therapists’ actions during the traditional NDT training. Then we use these data to translate the clinical know-how to build an expert database. Third, we develop a motor training system to repeat therapists’ actions based on the expert database. In order to improve the system response, we use the identification techniques to derive the transfer function and design robust controllers to cope with disturbances and noises during gait training. Last, we design a movable mechanism to accommodate the wearable gait detection system and the motor training system, so that the subjects can move by their preferred speed during gait training.
Finally, we integrate the aforementioned subsystems and mechanisms to construct a movable automatic gait trainer. We conduct the preliminary tests and show that the subjects’ walking ability has a positive influence by the proposed movable automatic gait trainer.
致謝 III
摘要 V
ABSTRACT VII
目錄 IX
圖目錄 XIII
表目錄 XIX
符號 XXI
縮寫 XXV
第一章 序論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 文獻回顧 4
1.4 論文架構 8
第二章 移動式自動化NDT步態訓練系統 9
2.1 整體系統架構 9
2.2 移動式訓練輔具硬體架構 10
2.3 穿戴式步態偵測系統之硬體元件 16
2.3.1 慣性測量元件 16
2.3.2 無線通訊模組 17
2.3.3 降壓模組 19
2.3.4 微處理器 20
2.4 馬達訓練系統之硬體元件 21
2.4.1 馬達與驅動器 21
2.4.2 拉繩機構設計 23
2.4.3 力量感測器 25
2.4.4 微處理器 27
2.5 安全系統設計 28
第三章 穿戴式步態偵測系統 33
3.1 穿戴式步態偵測系統之硬體整合架構 33
3.2 IMU訊號擷取與處理 35
3.3 步態偵測演算法 37
3.3.1 步態週期 37
3.3.2 步態相位偵測機制 38
3.3.3 偵測演算法之參數調整 44
3.3.4 測試與分析 50
3.4 資料無線傳輸 58
第四章 治療師專家系統 61
4.1 專家系統之轉譯 61
4.2 系統整體控制流程 66
第五章 馬達訓練系統 67
5.1 系統鑑別方法介紹 67
5.2 馬達訓練系統之系統識別 69
5.3 強韌控制設計理論 73
5.4 強韌控制器設計 87
5.5 實際訓練測試與比較 95
第六章 NDT步態訓練測試 99
6.1 訓練測試介紹 99
6.1.1 受測者收案條件 99
6.1.2 測試流程 102
6.1.3 受測者基本資料 109
6.2 效果指標 110
6.3 測試結果分析 112
第七章 結論與未來展望 121
7.1 結論 121
7.2 未來展望 122
附錄A、IRB核可證明 124
附錄B、受測者知情同意書 125
附錄C、步態訓練測試之分析資料擷取 131
附錄D、口試委員之問題與回答 132
參考文獻 139
[1]Stroke-Association. (2017). Stroke statistics. Available: https://www.stroke.org.uk/
[2]中華民國衛生福利部. (2016). 105年死因統計結果分析. Available: https://www.mohw.gov.tw/mp-1.html
[3]Centers-for-Disease-control-and-prevention. (2017). Stroke Facts. Available: https://www.cdc.gov/stroke/facts.htm
[4]the-guardian. (2017). Number of strokes in UK predicted to rise by 44% in next 20 years. Available: https://www.theguardian.com/society/2017/may/11/number-of-strokes-in-uk-predicted-to-rise-by-44-per-cent-in-20-years
[5]E. J. Benjamin et al., "Heart Disease and Stroke Statistics-2017 Update A Report From the American Heart Association," (in English), Circulation, Article vol. 135, no. 10, pp. E146-E603, Mar 2017.
[6]K. Bobath and B. Bobath, "The neuro-developmental treatment.," Management of the motor disorders of children with cerebral palsy. Clinics in Developmental Medicine, vol. 90, pp. 6-18, 1984.
[7]J. S. Vij and N. K. Multani, "Efficacy of neuro-developmental therapy based gait training in correction of gait pattern of post stroke hemiparetic patients.," Journal of Exercise Science and Physiotherapy, vol. 8.1, p. 30, 2012.
[8]E. Mikołajewska, "The value of the NDT-Bobath method in post-stroke gait training," Advances in Clinical and Experimental Medicine, vol. 22.2, pp. 261-272, 2013.
[9]M. V. MSc, P. Hugues Barbeau, P. Nicol Korner-Bitensky, and P. Nancy E. Mayo, "A new approach to retrain gait in stroke through body weight support and treadmill stimulation," Stroke, 1998.
[10]S. Hesse et al., "Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients," (in English), Stroke, Article vol. 26, no. 6, pp. 976-981, Jun 1995.
[11]L. Neuro. (2013). Body Weight Supported Treadmill training for hemiplegic patient (BWSTT). Available: https://www.youtube.com/watch?v=7nKjeYpcl5U
[12]S. Lennon, A. Ashburn, and D. Baxter, "Gait outcome following outpatient physiotherapy based on the Bobath concept in people post stroke," Disability and rehabilitation, vol. 28, no. 13-14, pp. 873-881, 2006.
[13]M. Pohl, J. Mehrholz, C. Ritschel, and S. Ruckriem, "Speed-dependent treadmill training in ambulatory hemiparetic stroke patients," Stroke, vol. 33.2, pp. 553-558, 2002.
[14]E. Mikolajewska, "Bobath and traditional approaches in post-stroke gait rehabilitation in adults," (in English), Biomedical Human Kinetics, Article vol. 9, no. 1, pp. 27-33, Feb 2017.
[15]G. Colombo, M. Joerg, R. Schreier, and V. Dietz, "Treadmill training of paraplegic patients using a robotic orthosis," Journal of Rehabilitation Research and Development, vol. 37, no. 6, pp. 693-700, 2000.
[16]S. Hesse and D. Uhlenbrock, "A mechanized gait trainer for restoration of gait," Journal of Rehabilitation Research and Development, vol. 37, no. 6, pp. 701-708, 2000.
[17]H. Schmidt, "Hapticwalker—a novel haptic device for walking simulation," in Proceedings of the EuroHaptics Conference, 2004, pp. 60-66.
[18]M. Peshkin, D. A. Brown, and J. J. Santos-Munne, "KineAssist: a robotic overground gait and balance training device," in Proceedings of the 9th IEEE International Conference on Rehabilitation Robotics, USA, 2005, pp. 241-246.
[19]P. M. e. C. Schmitt, A. Al-Khodairy, "The motion maker: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation," in Proceedings of the 8th Vienna International Workshop on Functional Electrical Stimulation, Vienna, Austria, 2004, pp. 117–120.
[20]A. Roy, H. I. Krebs, and S. L. Patterson, "Measurement of human ankle stiffness using the anklebot," in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics, The Netherlands, 2007, pp. 356–363.
[21]I. Díaz, J. J. Gil, and E. Sánchez, "Lower-Limb Robotic Rehabilitation: Literature Review and Challenges," Journal of Robotics, vol. 2011, pp. 1-11, 2011.
[22]M. F. Bruni, C. Melegari, M. C. De Cola, A. Bramanti, P. Bramanti, and R. S. Calabro, "What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis," J Clin Neurosci, vol. 48, pp. 11-17, Feb 2018.
[23]G. L. Gama, M. L. Celestino, J. A. Barela, L. Forrester, J. Whitall, and A. M. Barela, "Effects of Gait Training With Body Weight Support on a Treadmill Versus Overground in Individuals With Stroke," (in English), Archives of Physical Medicine and Rehabilitation, Article vol. 98, no. 4, pp. 738-745, Apr 2017.
[24]Phoenix-Technologies-Inc. VZ4000. Available: http://www.ptiphoenix.com/products/trackers/VZ4000
[25]VICON. VICON products. Available: https://www.vicon.com/
[26]K. K. R, "Future Directions in Gait Analysis," RRDS Gait Analysis in the Science of Rehabilitation., no. 4, pp. 85-112.
[27]M. R. E, N. V. A, and V. P. H, "Accelerometer and rate gyroscope measurement of kinematics- an inexpensive alterative to motion analysis system," Journal of Biomechanics, vol. 35, pp. 537-542, 2002.
[28]K. Aminian and B. Najafi, "Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications," COMPUTER ANIMATION AND VIRTUAL WORLDS, no. 15, pp. 79-94, 2004.
[29]D. J. Reinkensmeyer, S. J. Harkema, V. R. Edgerton, James BobroW, and C. Y. Wang, "ROBOTIC GAIT REHABILITATION BY OPTIMAL MOTION OF THE HIP," United States Patent US 7,125,388 B1, 2006.
[30]林育佑, "自動化神經發展治療步態訓練機之研發," 碩士論文, 機械工程學研究所, 國立臺灣大學, 2017.
[31]Rifton. Rifton Pacer Gait Trainers. Available: https://www.rifton.com/
[32]HAION. Certification. Available: http://www.haioncaster.com/ch/certification/
[33]European-Standards. EN 12530. Available: https://www.en-standard.eu/csn-en-12530-castors-and-wheels-castors-and-wheels-for-manually-propelled-institutional-applications/?gclid=EAIaIQobChMI8vKVjtOy2gIVQUy9Ch2eWQLlEAAYASAAEgJH5PD_BwE
[34]HAION. H392A-1A100UPB(3FN). Available: http://www.haioncaster.com/ch/product/medical-caster-h392a-1a100upb3fn/
[35]D. Gouwanda and S. M. N. A. Senanayake, "Emerging Trends of Body-Mounted Sensors in Sports and Human Gait Analysis," 2008.
[36]Y. S. Lee, C. S. Ho, Y. Shih, S. Y. Chang, F. J. Robert, and T. Y. Shiang, "Assessment of walking, running, and jumping movement features by using the inertial measurement unit," Gait Posture, vol. 41, no. 4, pp. 877-81, May 2015.
[37]Invensense, MPU-9250 Product Specification. 2014.
[38]Invensense, MPU-9250 Register Map and Descriptions. 2013.
[39]Invensense. MPU-9250 Nine-Axis MEMS MotionTracking Device. Available: https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
[40]NXP, I2C-bus specification and user manual. 2014.
[41]Espressif, ESP8266 Datasheet, 5.3 ed. Espressif, 2016.
[42]Espressif. ESP8266. Available: https://www.espressif.com/en/products/hardware/esp8266ex/overview
[43]Espressif, ESP8266 AT Instruction Set, 2.0 ed. Espressif, 2016.
[44]National_Semiconductor, LM2596 SIMPLE SWITCHER. National Semiconductor, 2002.
[45]Arduino. ARDUINO NANO. Available: https://store.arduino.cc/usa/arduino-nano
[46]Atmel, ATmega328/P Data Sheet. 2016.
[47]漢馬克驅動科技有限公司. 五相步進馬達及驅動器. Available: http://www.hanmark.com.tw/pro_detail.asp?s_no=8
[48]漢馬克驅動科技有限公司, MAC5518、MAC5528使用說明書. 2011.
[49]Transducer. Mini low profile load cell. Available: https://www.transducertechniques.com/mlp-load-cell.aspx
[50]Transducer, DIGITAL PANEL MOUNT METER OPERATOR MANUAL. Transducer Techniques, 2013.
[51]Transducer. Smart Digital Panel Mount Load Cell Meter. Available: https://www.transducertechniques.com/dpm-3.aspx
[52]Arduino. ARDUINO MEGA 2560. Available: https://store.arduino.cc/usa/arduino-mega-2560-rev3
[53]Atmel, Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V Data Sheet. 2014.
[54]Epomedicine. Physical Examination: Gait. Available: http://epomedicine.com/clinical-medicine/physical-examination-gait/
[55]J. R. Rebula, L. V. Ojeda, P. G. Adamczyk, and A. D. Kuo, "Measurement of foot placement and its variability with inertial sensors," Gait Posture, vol. 38, no. 4, pp. 974-80, Sep 2013.
[56]X. Yun, J. Calusdian, E. R. Bachmann, and R. B. McGhee, "Estimation of Human Foot Motion During Normal Walking Using Inertial and Magnetic Sensor Measurements," IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 7, pp. 2059-2072, 2012.
[57]N. Furuse and T. Watanabe, "A Study on Sensing System of Lower Limb Condition with Piezoelectric Gyroscopes: Measurements of Joint Angles and Gait Phases."
[58]K. Aminian, "Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes," Journal of Biomechanics, 2002.
[59]B. R. Greene, D. McGrath, K. J. O‟Donovan, R. O‟Neill, A. Burns, and B. Caulfield, "Adaptive estimation of temporal gait parameters using body-worn gyroscopes," 2010.
[60]B. R. Greene, D. McGrath, R. O''Neill, K. J. O''Donovan, A. Burns, and B. Caulfield, "An adaptive gyroscope-based algorithm for temporal gait analysis," (in English), Medical & Biological Engineering & Computing, Article vol. 48, no. 12, pp. 1251-1260, Dec 2010.
[61]A. M. Sabatini, C. Martelloni, S. Scapellato, and F. Cavallo, "Assessment of walking features from foot inertial sensing," IEEE Trans Biomed Eng, vol. 52, no. 3, pp. 486-94, Mar 2005.
[62]Z. Wang and R. Ji, "Estimate spatial-temporal parameters of human gait using inertial sensors," 2015.
[63]X. Meng and H. Yu, "Gait phase detection in able-bodied subjects and dementia patients," 2013.
[64]王子家, "智慧型倒單擺助行車之研發," 碩士論文, 機械工程學研究所, 國立臺灣大學, 2017.
[65]S. Z. Yang, J. T. Zhang, A. C. Novak, B. Brouwer, and Q. G. Li, "Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors," (in English), Gait & Posture, Article vol. 37, no. 3, pp. 354-358, Mar 2013.
[66]PhoeniX, Visualeyez II Manual V4.5.2. PhoeniX Technologies Incorporated, 2011.
[67]PhoeniX, Visualeyez Quick Start Guide. Phoenix Technologies, 2015.
[68]M. E. Khan and F. Khan, "A comparative study of white box, black box and grey box testing techniques," International Journal of Advanced Computer Science and Applications (IJACSA), vol. 3, no. 6, pp. 12-15, 2012.
[69]A. Sano, L. Sun, and H. Ohmori, "Direct closed-loop identification approach to unstable systems.," Control Conference (ECC), 1999
[70]J. Doyle, B. Francis, and A. Tannenbaum, Feedback control theory. Macmillan, 1990.
[71]K. Zhou, Essentials of robust control. Prentice Hall International, 1998.
[72]K. Glover and D. McFarlane, "Robust stabilization of normalized coprime factor plant descriptions with H∞-bounded uncertainty," IEEE transactions on Automatic Control, vol. 34, no. 8, pp. 821-830, 1989.
[73]D. McFarlane and K. Glover, "A loop-shaping design procedure using H∞ synthesis," IEEE transactions on Automatic Control, vol. 37, no. 6, pp. 759-769, 1992.
[74]F. C. Wang, L. S. Chen, and Y. C. Tsai, "Robust loop-shaping control for a nano-positioning stage," Journal of Vibration and Control, vol. 20, no. 9, pp. 885-900, 2014.
[75]台大人體試驗委員會. 台大醫院臨床試驗中心. Available: https://www.ntuh.gov.tw/NCTRC/training/training.aspx
[76]D. Mungas, "Iii-office mental status testing: A practical guide," Geriatrics, vol. 46, no. 7, 1991.
[77]Saebo. The Brunnstrom Stages of Stroke Recovery. Available: https://www.saebo.com/the-stages-of-stroke-recovery/
[78]H. MK, G. KM, and M. MR, "Gait assessment for neurologically impaired patients. Standards for outcome assessment," Physical therapy, vol. 66, no. 10, 1986.
[79]C. Werner, S. von Frankenberg, T. Treig, M. Konrad, and S. Hesse, "Treadmill Training With Partial Body Weight Support and an Electromechanical Gait Trainer for Restoration of Gait in Subacute Stroke Patients: A Randomized Crossover Study," Stroke, vol. 33, no. 12, pp. 2895-2901, 2002.
[80]P. KK, P. I, D. CJ, C. V, V. MC, and S. WR, "Gait asymmetry in community-ambulating stroke survivors," Archives of Physical Medicine and Rehabilitation, vol. 89, no. 2, 2008.
[81]G. Chen, C. Patten, D. H. Kothari, and F. E. Zajac, "Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds," Gait Posture, vol. 22, no. 1, pp. 51-6, Aug 2005.
[82]AC-MOBILITY. Rifton Pacer Accessories. Available: http://acmobility.com.au/rifton-pacer-tram-walker/rifton-pacer-gait-trainers/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊