(3.238.186.43) 您好!臺灣時間:2021/02/28 12:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張煒鑫
研究生(外文):Wei-Hsin Chang
論文名稱:雙光子聚合技術之水凝膠材料特徵與快速微製造
論文名稱(外文):Characterization of hydrogel material and fast microfabrication by two-photon polymerization technology
指導教授:鐘添東鐘添東引用關係
指導教授(外文):Tien-Tung Chung
口試委員:廖運炫盧彥文廖英志王安邦
口試委員(外文):Yunn-Shiuan LiaoYen-Wen LuYing-Chih LiaoAn-Bang Wang
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:104
中文關鍵詞:雙光子聚合雙光子吸收PEGDAORMOCOMP振鏡掃描器分光繞射光學元件菲涅耳透鏡
DOI:10.6342/NTU201903587
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以雙光子聚合技術研究水凝膠材料PEGDA在雙光子微製造中的特性,另以振鏡掃描器及分光繞射光學元件進行大範圍雙光子快速微製造之研究。在PEGDA產品的製作中,使用了532奈米波長之Nd:YAG皮秒雷射和數值孔徑1.3的100倍物鏡。為了要了解PEGDA材料在雙光子微製造之下的線寬,使用了上升掃描法(Ascending scan method) 和懸吊橋樑法 (Suspending bridge method),得到在不同雷射能量和曝光時間所製作之線的長短軸比,由此結果即可以精準的製作三維微結構。在ORMOCOMP®材料的快速微製造中,使用了515奈米波長之飛秒雷射、xy方向之振鏡掃描器、z軸壓電平台、數值孔徑0.8的50倍物鏡、5 x 5分光繞射光學元件以及xy平面移動平台等設備,製作了一個數量100 x 100之菲涅耳透鏡 (Fresnel zone plate lens) 陣列,製作時間為70分鐘,其面積範圍為3.32mm x 3.32mm、精度為0.67µm。由光學測試結果可得其具有良好的聚焦和成像品質。
This thesis studies the characteristics of hydrogel material polyethylene glycol diacrylate (PEGDA) in microfabrication using two-photon polymerization (TPP) technology. Fast microfabrication of large area TPP products are also studied by using galvanometer scanner with diffractive optical element (DOE). For fabrication of PEGDA products, a 532nm wavelength Nd:YAG picosecond laser and a 100x objective lens with numerical aperture (NA) 1.3 are used. For finding the PEGDA line width in TPP fabrication, two experimental methods, ascending scan method and suspending bridge method, are used. Different aspect ratios of line dimension with different laser power and exposure time can be obtained. It is used in precision fabrication of 3D micro structures. For the fast fabrication using ORMOCOMP® material, a 515nm wavelength femtosecond laser, a xy galvanometer scanner, a z-axis piezo stage, a 50x objective lens with NA 0.8, a 5 x 5 DOE, and a xy planar translation stage are used. A Fresnel zone plate (FZP) lens array with 100 x 100 lens number is rapidly fabricated in 70 minutes. The FZP lens array has area size of 3.32mm x 3.32mm with a resolution of 0.67 µm. From the optical test, it shows good focusing condition and imaging quality.
CONTENTS
口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
LIST OF FIGURES IX
LIST OF TABLES XVII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 5
1.3 Research motivation 9
1.4 Outline 11
Chapter 2 Principle and fabrication process of TPP 12
2.1 Fundamental theory of TPP process 13
2.2 TPP fabrication process 17
2.3 NTUMFS CAM system for TPP micro fabrication 19
2.4 Application of adhesion promoter in TPP fabrication process 21
2.5 Supercritical point drying process 24
2.6 Scanning electronic microscope image 27
Chapter 3 Experimental setup and materials for TPP micro fabrication 28
3.1 TPP micro fabrication system based on 3D piezo stage 28
3.2 TPP micro fabrication system based on galvanometer scanner 31
3.3 Materials for TPP micro fabrication 40
Chapter 4 Optimization for hydrogel material in TPP fabrication formulation 44
4.1 Simulation of optics for hydrogel material 45
4.2 Optimization of TPP fabrication parameters with ascending scan method 48
4.2.1 CAD model and slicing parameters 48
4.2.2 SEM images from experiment 49
4.2.3 Optimization results of TPP fabrication parameters 51
4.3 Optimization of TPP fabrication parameters with suspending bridge method 57
4.3.1 CAD model and slicing parameters 58
4.3.2 SEM images from experiment 59
4.3.3 Optimization results of TPP fabrication parameters 61
4.4 Comparison between simulation and experimental result 65
Chapter 5 TPP micro fabrication applications 69
5.1 TPP micro fabrication of characters 69
5.1.1 Fabrication of Chinese NTU characters 70
5.1.2 Fabrication of erect characters 71
5.1.3 Modification for the erect NTU characters 73
5.2 Fabrication of 100 x 100 micro FZP array 75
5.2.1 Calculation and Design for FZP CAD model 76
5.2.2 TPP Fabrication of 100 x 100 FZP 78
5.2.3 Optical properties test for 100 x 100 FZP array 81
5.3 Modified fabrication of 100 x 100 micro FZP array 84
5.3.1 Design for modified FZP CAD model 84
5.3.2 TPP Fabrication of modified 100 x 100 FZP 86
5.3.3 Optical properties test for 100 x 100 FZP array 88
Chapter 6 Conclusions and suggestions 90
6.1 Conclusions 90
6.2 Suggestions 91
References 93
Appendix A Simulation for TPP fabrication 99
Appendix B Recipe for PEGDA mixed with PETA 102
References
[1]E Käpylä1, S Turunen1, J Pelto1,2, J Viitanen2 and M Kellomäki1, " Investigation of the optimal processing parameters for picosecond laser-induced microfabrication of a polymer–ceramic hybrid material," J. Micromech. Microeng. 2011.
[2]M. Göppert-Mayer, "Über Elementarakte mit zwei Quantensprüngen," Annalen der Physik, vol. 401, no. 3, pp. 273–294, 1931.
[3]W. Kaiser, and C.G.B. Garrett, "Two-Photon Excitation in CaF2:Eu2+," Physical Review Letters,vol. 7, no. 6, pp. 229-231, 1961.
[4]K.-S. Lee, D.-Y. Yang, S. H. Park, R. H. Kim, "Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications," Polymers for Advanced Technologies, vol. 17, no. 2, pp. 72-82, 2006.
[5]S. Maruo, and S. Kawata, "Two-Photon-Absorbed Near-Infrared Photopolymerization for the-dimensional microfabrication," Jouranl of microelectromechanical system, vol. 7, no. 4, pp. 411-415, 1998.
[6]H.C. Ishikawa-Ankerhold, R. Ankerhold, and G.P. Drummen, "Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM," Molecules, vol. 17, no. 4, pp. 4047-4132, 2012.
[7]S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon- absorbed photonpolymerization," OPTICS LETTERS, vol. 22, no 2, pp. 132-134, 1997.
[8]D. Tan, Y. Li, F. Qi, H. Yang, and Q. G. Dong and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Applied Physics Letters, vol. 90, no. 7, 2007.
[9]H.-B. Sun, T. Tanaka, and S. Kawata, "Three-dimensional focal spots related to two-photon excitation," Applied Physics Letters, vol. 80, no. 20, pp. 3673-3675, 2002.
[10]Robert J. DeVoe, Harvey W. Kalweit, Catherine A. Leatherdale, Todd R. Williams, "Voxel shapes in two-photon microfabrication," in SPIE Proceedings, pp. 310-316, 2003.
[11]N. Bertin, T. Spelman, O. Stephan, L. Gredy, M. Bouriau, E. Lauga, P. Marmottant, "Propulsion of Bubble-Based Acoustic Microswimmers," Physical Review Applied, vol. 4, no. 6, p. 064012, 2015.
[12]G. Göring, P.-I. Dietrich, M. Blaicher, S. Sharma, J. G. Korvink, T. Schimmel, C. Koos, and H. Hölscher, "Tailored probes for atomic force microscopy fabricated by two-photon polymerization," Applied Physics Letters, vol. 109, no. 6, p. 063101, 2016.
[13]M. Bieda, F. Bouchard, and A.F. Lasagni, "Two-photon polymerization of a branched hollow fiber structure with predefined circular pores," Journal of Photochemistry and Photobiology A: Chemistry, vol. 319, p. 1-7, 2016.
[14]M. Power, G. Z. Yang, "Direct laser written passive micromanipulator end-effector for compliant object manipulation," in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.790-797, 2015.
[15]P. S. Timashev, M. V. Vedunova, D. Guseva, E. Ponimaskin, A. Deiwick, T. A. Mishchenko, E. V. Mitroshina, A. V. Koroleva, A. S. Pimashkin, I. V. Mukhina, V. Ya. Panchenko, B. N. Chichkov and V. N. Bagratashvili, "3D in vitro platform produced by two-photon polymerization for the analysis of neural network formation and function," Biomedical Physics & Engineering Express, vol. 2, no. 3, 2016.
[16]T. StichelEmail, B. Hecht, R. Houbertz, G. Sextl, "Compensation of spherical aberration influences for two-photon polymerization patterning of large 3D scaffolds," Applied Physics A, vol. 121, no. 1, pp. 187-191, 2015.
[17]AOvsianikov, M. Gruene1, M. Pflaum, L. Koch, F. Maiorana1,M. Wilhelmi, A. Haverich and B. Chichkov,"Laser printing of cells into 3D scaffolds," Biofabrication, Vol. 2, Num. 1, 2010.
[18]H. Liao, D. Munoz-Pinto, X. Qu, Y. Hou, M. A. Grunlan, Mariah S. Hahn, "Infuence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype," Acta Biomaterialia 1161-1171, 2008.
[19]P.H. Wang, W.L. Huang, W.H. Chang, T.T. Chung, and Y.W. Lu , "PEG-DA FABRICATION FOR MICROSTRUCTURES THROUGH TWO PHOTON POLYMERIZATION," in the 32nd IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 2019, OP-023, Jan. 27~31, 2019, Coex, Seoul.
[20]García, Jorge Meyrán, "Augustin-Jean Fresnel," Rev Mex Oftalmol 82.2, pp. 130, 2008.
[21]Albert C. Thompson, David T. Attwood, Eric M. Gullikson, Malcolm R. Howells, Jeffrey B. Kortright, Arthur L. Robinson, and James H. Underwood, "Zone Plates", X-Ray Data Booklet. Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory, pp. 410-414, retrieved 13 January 2015.
[22]C.H. Hoi, "Design and Fabrication of Micro-Lens Arrays by Two-Photon Polymerization," master thesis, Department of Mechanical Engineering College of Engineering National Taiwan University, 2015
[23]S.H. Park, T.W. Lim, and D.Y. Yang, "Direct Fabrication of Micropatterns and Three-Dimensional Structures Using Nanoreplication-Printing (nRP) Process," Department of Mechanical Engineering, Korea Advanced Institute of Science& Technology
[24]Chao-Yaug Liao, "Product Model Creation and Simulation for Two-photon Polymerization Micromanufacturing," Mechanics [physics.med-ph]. Université Joseph-Fourier - Grenoble I; National Taiwan University, 2008.
[25]H.-B. Sun, and S. Kawata, "Two-photon laser precision microfabrication and its applications to micro-nano devices and systems," Journal of Lightwave Technology, vol. 21, no. 3, pp. 624-633, 2003.
[26]W. J. Lee, "Optimization of material and fabrication process for micro fabrication by Two-Photon Polymerization," master thesis, Department of Mechanical Engineering College of Engineering National Taiwan University, 2013
[27]Shuhui Wu , Jesper Serbin, Min Gu, "Two- photon polymerisation for three dimensional micro- fabrication," Journal of Photochemistry and Photo biology A: Chemistry 181, 2006
[28]D.S. Correa, Leonardo De Boni, A.J.G. Otuka, Vinicius Tribuzi, C.R. Mendonça, "Two-Photon Polymerization Fabrication of Doped Microstructures," in Polymerization, A.D.S. Gomes, Editor, InTech: Rijeka. Ch. 15, 2012.
[29]J. H. MacMillan, "Using Silanes as Adhesion Promoters," United Chemical Technologies, Inc.
[30]T. Hasegawa, and S. Maruo, "Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures," in International Symposium on Micro-NanoMechatronics and Human Science, pp. 12-15, 2007.
[31]S. Maruo, T. Hasegawa, and N. Yoshimura, "Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures," Optics Express, vol. 17, no. 23, pp. 20945-20951, 2009.
[32]Y. Liu, D. D. Nolte, and L. J. Pyrak-Nolte, "Large-format fabrication by two-photon polymerization in SU-8," Applied Physics A, vol. 100, no. 1, pp. 181–191, Jul. 2010.
[33]K. Takada, H.-B. Sun, and S. Kawata, "The study on spatial resolution in two-photon induced polymerization," Micromachining Technology for Micro-Optics and Nano-Optics IV, Jan. 2006.
[34]A. X. Xin, C. Gaydos, and J. J. Mao, "In vitro Degradation Behavior of Photopolymerized PEG Hydrogels as Tissue Engineering Scaffold," IEEE, EMBS Annual International Conference, 2006
[35]H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, "Scaling laws of voxels in two-photon photopolymerization nanofabrication," Appl. Phys. Lett., vol. 83, no. 6, p. 1104, 2003.
[36]Q. -W. Tang, "Design and Fabrication of Large Scale 3D objects by Two-Photon Polymerization Technology," master thesis, Department of Mechanical Engineering College of Engineering National Taiwan University, 2017
[37]T. Woggon, T. Kleiner, M. Punke and U. Lemmer, "Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization," Optics express, vol. 17, no.4, pp. 2500-2507, 2009.
[38]C.- S. Cheong, "Fabrication of Substrates with Different Surface Roughness Region by Two Photon Polymerization Technology," master thesis, Department of Mechanical Engineering College of Engineering National Taiwan University, 2018
[39]M. J. Nasse and J. C. Woehl, "PSF Lab," The One Molecule Group University of Wisconsin, 2010
[40]M. J. Nasse and J. C. Woehl, "Realistic modeling of the illumination point spread function in confocal scanning optical microscopy," J. Opt. Soc. Am. A 27, 295-302 (2010).
[41]Quorum Technologies, " Critical-point-drying-brochure," http://www.quorumtech.com
[42]Y.- H. Hsueh, "Micro Manufacturing System for Two-Photon Polymerization with Automatic Focus and Tilt Correction," master thesis, Department of Mechanical Engineering College of Engineering National Taiwan University, 2013
[43]Sigma-Aldrich, "Product Specification (PEGDA Mn700)"
[44]Sigma-Aldrich, "Product Specification (PETA)"
[45]Y.- K. Lee, "Development and Fabrication of Large Scale Structures by Two-Photon Polymerization Technology," master thesis, Department of Mechanical Engineering College of Engineering National Taiwan University, 2018
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔