(3.232.129.123) 您好!臺灣時間:2021/02/26 21:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李昀叡
研究生(外文):Yun-Jui Lee
論文名稱:檢流電阻之電流感測改善與過調變補償方法
論文名稱(外文):Improvement of shunt-based current sensing and inverter overmodulation strategy
指導教授:楊士進
指導教授(外文):Shih-Chin Yang
口試委員:楊勝明劉添華劉承宗蔡孟勳
口試委員(外文):Sheng-Ming YangTian-Hua LiuCheng-Tsung LiuMeng-Shiun Tsai
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:75
中文關鍵詞:檢流電阻之電流感測電流控制磁場導向控制
DOI:10.6342/NTU201903682
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出兩個方法來改善在馬達高速高電壓使用率會出現的問題,第一部分主要改善的是使用檢流電阻來量測馬達電流的變頻器架構,旨在開發用不同方法來解決在高電壓使用率時,會發生電流感測死區的問題,在這些區域裡會有兩相的相電流同時量測不到,就會使三相變頻器的輸出電壓無法達到最大值,造成變頻器的性能降低。
本論文會提出兩種不同的方法來改善電流失真的問題:(1)第一個方法是使用三個檢流電阻,並從中選擇較好的兩相電流來做回授,在電壓使用率在0.2~0.95之間,可以有效的改善電流失真的問題,而(2)第二個方法是當電壓使用率超過0.95之後,使用Discontinuous Pulse Width Modulation (DPWM)進行電壓控制,提升相電阻電流感測範圍,從實驗結果可知,對於全調變區域的總電流諧波失真可以減小到60%以下。
除了電流感測死區的問題之外,在電壓使用率超過0.866後,另外一個會限制高速驅動的就是變頻器過調變,導致在高速時的動態響應低落,本論文建議在原本的電流控制器前加入電壓回授的暫態修改器,藉由在暫態的過程中,短暫的減小d軸電流,此方法可以改善暫態響應,且不會影響原本的穩態響應。
本論文所提出的方法,將會藉由300W、8極的內藏式永磁同步馬達(IPMSM)跟實驗來驗證。
This thesis presents two improvements on the high speed machine drive during high PWM voltage modulation index. The first part concentrates on the voltage source inverter with shunt resistors for machine current measurement. The proposed technique solves the current sensing dead zone which typically occurs in high modulation index. Two methods are developed to minimize the current sensing dead zone. The first method is based on the selection of two suitable phases under three-phase current sensing topology. The sensing dead zone is improved during 0.2~0.95 modulation index.
In addition, the second method is proposed for the current sensing when the modulation index is higher than 0.95. On the basis, the DPWM is implemented to obtain more current measurement window under the same modulation index. It is concluded that the total current harmonic distortion can be minimized under 60% for full region modulation.
In addition to current sensing dead zone, the inverter overmodulation is another issue to limit the high speed drive when the modulation index is beyond 0.866. This issue results in the degraded dynamic response at high speed. Under this effect, the second part develops the overmodulation control strategy to improve the drive transient response. By manipulating d-axis current dependent on the PWM voltage command, the transient state of current control is improved while maintaining steady-state performance. All the proposed methods are verified based on a 300W and 8-pole high speed permanent magnet machine.
誌謝 iii
中文摘要 iv
ABSTRACT v
目錄 vi
圖目錄 viii
表目錄 xii
符號彙編 xiii
第 1 章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 電流感測的方法:霍爾感測器 v.s. 檢流電阻 3
1.2.2 檢流電阻的問題 7
1.2.3 變頻器過調變 13
1.2.4 連續脈寬調變(CPWM) 16
1.2.5 不連續脈寬調變(DPWM) 19
1.2.6 弱磁控制 22
1.3 研究目的 27
1.4 論文大綱 29
第 2 章 檢流電阻之電流感測改善 30
2.1 兩相檢流電阻的配置 30
2.2 三相檢流電阻的配置 31
2.3 DPWM增加下臂導通時間 37
第 3 章 變頻器過調變策略 42
3.1 非弱磁區過調變補償 42
3.2 弱磁區過調變補償 46
第 4 章 實驗結果 49
4.1 實驗測試設備 49
4.2 檢流電阻之電流感測改善 52
4.2.1 加入補償前後的電流穩態響應 52
4.2.2 加入補償前後的高速暫態以及穩態響應 55
4.2.3 不同電壓使用率下三種演算法的電流總諧波失真比較 59
4.2.4 三種演算法在不同電壓使用率下的效率比較 61
4.3 變頻器過調變策略 63
4.3.1 弱磁區的過調變補償 64
4.3.2 弱磁控制的過調變補償 65
第 5 章 結論與未來方向 67
5.1 結論 67
5.1.1 檢流電阻之電流感測改善 67
5.1.2 過調變補償策略 68
5.2 未來工作 69
5.2.1 將DPWM應用在單相檢流電阻 69
5.2.2 應用voltage sensing的方法計算電壓六邊形 69
參考文獻 70
[1]J. H. Song, J. M. Kim, and S. K. Sul, "A new robust SPMSM control to parameter variations in flux weakening region," in Proceedings of the IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 1996, vol. 2, pp. 1193-1198 vol.2.
[2]T. M. Jahns, "Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive," IEEE Transactions on Industry Applications, vol. IA-23, no. 4, pp. 681-689, 1987.
[3]B. Bose, "Modern Power Electronics and AC Drives," 2002.
[4]D. W. Braudaway, "Behavior of resistors and shunts: with today''s high-precision measurement capability and a century of materials experience, what can go wrong?," IEEE Transactions on Instrumentation and Measurement, vol. 48, no. 5, pp. 889-893, 1999.
[5]J. A. Ferreira, W. A. Cronje, and W. A. Relihan, "Integration of high frequency current shunts in power electronic circuits," IEEE Transactions on Power Electronics, vol. 10, no. 1, pp. 32-37, 1995.
[6]J. R. Brauer, Magnetic Actuators and Sensors. John Wiley & Sons., 2006.
[7]D. A. Ward, "Measurement of current using Rogowski coils," in IEE Colloquium on Instrumentation in the Electrical Supply Industry, 1993, pp. 1/1-1/3.
[8]X. Chucheng, Z. Lingyin, T. Asada, W. G. Odendaal, and J. D. v. Wyk, "An overview of integratable current sensor technologies," in 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference., 2003, vol. 2, pp. 1251-1258 vol.2.
[9]C. M. Johnson and P. R. Palmer, "Current measurement using compensated coaxial shunts," IEE Proceedings - Science, Measurement and Technology, vol. 141, no. 6, pp. 471-480, 1994.
[10]P. E. Schneider, "Integration of Field Sensing in Power Semiconductor Modules for Current Sensing," Dept. Mechanical Engineering, vol. Ph.D Dissertaion : University of Wisconsin-Madison 2011
[11]F. Castelli, "The flat strap sandwich shunt," IEEE Transactions on Instrumentation and Measurement, vol. 48, no. 5, pp. 894-898, 1999.
[12](2014). Current transducer HO-P series. Available: https://www.lem.com/sites/default/files/products_datasheets/ho-p_series.pdf
[13]S. Ziegler, R. C. Woodward, H. H.-C. Iu, and L. J. Borle, "Current Sensing Techniques: A Review," IEEE Sensors Journal, vol. 9, no. 4, pp. 354-376, 2009.
[14]F. Blaabjerg, J. K. Pedersen, U. Jaeger, and P. Thoegersen, "Single current sensor technique in the DC link of three-phase PWM-VS inverters: a review and a novel solution," IEEE Transactions on Industry Applications, vol. 33, no. 5, pp. 1241-1253, 1997.
[15]C. Wang and S. Lin, "A simple single shunt current reconstruction approach for low-cost permanent magnet synchronous motor drives," in International Automatic Control Conference 2015, pp. 79-84.
[16]F. Blaabjerg and J. K. Pedersen, "A new low-cost, fully fault-protected PWM-VSI inverter with true phase-current information," IEEE Transactions on Power Electronics, vol. 12, no. 1, pp. 187-197, 1997.
[17]W. C. Lee, T. K. Lee, and D. S. Hyun, "Comparison of single-sensor current control in the DC link for three-phase voltage-source PWM converters," IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 491-505, 2001.
[18]W. C. Lee, D. S. Hyun, and T. K. Lee, "A novel control method for three-phase PWM rectifiers using a single current sensor," IEEE Transactions on Power Electronics, vol. 15, no. 5, pp. 861-870, 2000.
[19]Y. Gu, F. Ni, D. Yang, and H. Liu, "Switching-State Phase Shift Method for Three-Phase-Current Reconstruction With a Single DC-Link Current Sensor," IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5186-5194, 2011.
[20]K. Sun, Q. Wei, L. Huang, and K. Matsuse, "An Overmodulation Method for PWM-Inverter-Fed IPMSM Drive With Single Current Sensor," IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3395-3404, 2010.
[21]H. Kim and T. M. Jahns, "Phase Current Reconstruction for AC Motor Drives Using a DC Link Single Current Sensor and Measurement Voltage Vectors," IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1413-1419, 2006.
[22]Y. Li and N. Ertugrul, "An Observer-Based Three-Phase Current Reconstruction using DC Link Measurement in PMAC Motors," in CES/IEEE 5th International Power Electronics and Motion Control Conference, 2006, vol. 1, pp. 1-5.
[23]B. Saritha and P. A. Janakiraman, "Sinusoidal Three-Phase Current Reconstruction and Control Using a DC-Link Current Sensor and a Curve-Fitting Observer," IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2657-2664, 2007.
[24]Y. Cho, T. LaBella, and J. Lai, "A Three-Phase Current Reconstruction Strategy With Online Current Offset Compensation Using a Single Current Sensor," IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2924-2933, 2012.
[25]J. I. Ha, "Voltage Injection Method for Three-Phase Current Reconstruction in PWM Inverters Using a Single Sensor," IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 767-775, 2009.
[26]J. I. Ha, "Current Prediction in Vector-Controlled PWM Inverters Using Single DC-Link Current Sensor," IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 716-726, 2010.
[27]F. Parasiliti, R. Petrella, and M. Tursini, "Low cost phase current sensing in DSP based AC drives," in ISIE ''99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No.99TH8465), 1999, vol. 3, pp. 1284-1289 vol.3.
[28]K. Hyunbae, Y. Sungmo, K. Namsu, and R. D. Lorenz, "Using low resolution position sensors in bumpless position/speed estimation methods for low cost PMSM drives," in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference., 2005, vol. 4, pp. 2518-2525 Vol. 4.
[29]S. M. Shin, R. K. Park, and B. K. Lee, "Compensation PWM Technique for Extended Output Voltage Range in Three-Phase VSI Using Three Shunt Resistors," Journal of Electrical Engineering and Technology, vol. 9, pp. 1324-1331, 07/01 2014.
[30]B. G. Cho, J. I. Ha, and S. K. Sul, "Voltage injection method for boundary expansion of output voltages in three shunt sensing PWM inverters," in 8th International Conference on Power Electronics - ECCE Asia, 2011, pp. 411-415.
[31]B. G. Cho, J. I. Ha, and S. K. Sul, "Analysis of the Phase Current Measurement Boundary of Three Shunt Sensing PWM Inverters and an Expansion Method," Journal of Power Electronics, vol. 13, 03/20 2013.
[32]S. Chi, X. Wang, Y. Yuan, Z. Zhang, and L. Xu, "A Current Reconstruction Scheme for Low-Cost PMSM Drives Using Shunt Resistors," in APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, 2007, pp. 1701-1706.
[33]Y. H. Jang, D. Y. Kim, A. Y. Ko, I. K. Won, Y. R. Kim, and C. Y. Won, "Three phase current reconstruction method using predictive current in three shunt sensing PWM inverter," in IEEE Transportation Electrification Conference and Expo, Asia-Pacific 2016, pp. 436-440.
[34]L. Huang, "Universal MTPA control for permanent magnet synchronous motor drives," in 2nd International Conference on Robotics and Automation Engineering 2017, pp. 322-326.
[35]T. M. Rowan and R. J. Kerkman, "A New Synchronous Current Regulator and an Analysis of Current-Regulated PWM Inverters," IEEE Transactions on Industry Applications, vol. IA-22, no. 4, pp. 678-690, 1986.
[36]A. M. Hava, S. K. Sul, R. J. Kerkman, and T. A. Lipo, "Dynamic overmodulation characteristics of triangle intersection PWM methods," IEEE Transactions on Industry Applications, vol. 35, no. 4, pp. 896-907, 1999.
[37]S. Lerdudomsak, M. Kadota, S. Doki, and S. Okuma, "Novel Techniques for Fast Torque Response of IPMSM Based on Space-Vector Control Method in Voltage Saturation Region," in IECON - 33rd Annual Conference of the IEEE Industrial Electronics Society, 2007, pp. 1015-1020.
[38]S. Lerdudomsak, S. Doki, and S. Okuma, "Voltage limiter calculation method for fast torque response of IPMSM in overmodulation range," in 35th Annual Conference of IEEE Industrial Electronics, 2009, pp. 1383-1388.
[39]J. Jung and K. Nam, "A dynamic decoupling control scheme for high-speed operation of induction motors," IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp. 100-110, 1999.
[40]D. R. Seidl, D. A. Kaiser, and R. D. Lorenz, "One-step optimal space vector PWM current regulation using a neural network," in Proceedings of 1994 IEEE Industry Applications Society Annual Meeting, 1994, vol. 2, pp. 867-874 vol.2.
[41]B. H. Bae and S. K. Sul, "A novel dynamic overmodulation strategy for fast torque control of high-saliency-ratio AC motor," IEEE Transactions on Industry Applications, vol. 41, no. 4, pp. 1013-1019, 2005.
[42]J. K. Seok, J. S. Kim, and S. K. Sul, "Overmodulation strategy for high-performance torque control," IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 786-792, 1998.
[43]J. W. Choi and S. K. Sul, "Generalized solution of minimum time current control in three-phase balanced systems," IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 738-744, 1998.
[44]S. Bolognani, M. Tomasini, L. Tubiana, and M. Zigliotto, "DSP-based time optimal current control for high dynamic IPM motor drives," in IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004, vol. 3, pp. 2197-2203 Vol.3.
[45]J. W. Choi and S. K. Sul, "Design of fast-response current controller using d-q axis cross coupling: application to permanent magnet synchronous motor drive," IEEE Transactions on Industrial Electronics, vol. 45, no. 3, pp. 522-524, 1998.
[46]D. S. Maric, S. Hiti, C. C. Stancu, J. M. Nagashima, and D. B. Rutledge, "Two flux weakening schemes for surface-mounted permanent-magnet synchronous drives. Design and transient response considerations," in ISIE ''99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No.99TH8465), 1999, vol. 2, pp. 673-678 vol.2.
[47]A. Schonung, "Static Frequency Changers with Subharmonic Control in Conjunction with Reversible Variable-Speed AC Drives," Brown Boveri Review, vol. 555, 1964 1964.
[48]A. Hava, Carrier-based PWM-VSI drives in the overmodulation region, PhD thesis. 1998.
[49]K. G. King., "A three phase transistor class-b inverter with sinewave output and high efficiency " in Inst. Elec. Eng. Conf. Publ. 123, 1974, pp. 204-209.
[50]H. W. v. d. Broeck, H. Skudelny, and G. V. Stanke, "Analysis and realization of a pulsewidth modulator based on voltage space vectors," IEEE Transactions on Industry Applications, vol. 24, no. 1, pp. 142-150, 1988.
[51]G. Pfaff, A. Weschta, and A. F. Wick, "Design and Experimental Results of a Brushless AC Servo Drive," IEEE Transactions on Industry Applications, vol. IA-20, no. 4, pp. 814-821, 1984.
[52]A. M. Hava, R. J. Kerkman, and T. A. Lipo, "Simple analytical and graphical methods for carrier-based PWM-VSI drives," IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 49-61, 1999.
[53]A. M. Hava, R. J. Kerkman, and T. A. Lipo, "A high-performance generalized discontinuous PWM algorithm," IEEE Transactions on Industry Applications, vol. 34, no. 5, pp. 1059-1071, 1998.
[54]J. Holtz, "Pulsewidth modulation for electronic power conversion," Proceedings of the IEEE, vol. 82, no. 8, pp. 1194-1214, 1994.
[55]K. Taniguchi, Y. Ogino, and H. Irie, "PWM technique for power MOSFET inverter," IEEE Transactions on Power Electronics, vol. 3, no. 3, pp. 328-334, 1988.
[56]J. W. Kolar, H. Ertl, and F. C. Zach, "Influence of the modulation method on the conduction and switching losses of a PWM converter system," IEEE Transactions on Industry Applications, vol. 27, no. 6, pp. 1063-1075, 1991.
[57]S. Ogasawara, H. Akagi, and A. Nabae, "A novel PWM scheme of voltage source inverters based on space vector theory," Archiv für Elektrotechnik, vol. 74, no. 1, pp. 33-41, 1990.
[58]T. Xu, R. Wei, K. Zhou, and F. Gao, "Global synchronous discontinuous pulse width modulation method with fast calculation capability for distributed three-phase inverters," Journal of Modern Power Systems and Clean Energy, vol. 4, no. 1, pp. 103-112, 2016.
[59]A. Yoo, S. K. Sul, H. Kim, and K. S. Kim, "Flux-Weakening Strategy of an Induction Machine Driven by an Electrolytic-Capacitor-Less Inverter," IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1328-1336, 2011.
[60]Y. Zhang, L. Xu, M. K. Guven, S. Chi, and M. S. Illindala, "Experimental verification of deep flux-weakening operation of a 50 kW IPM machine by using single current regulator," in IEEE Energy Conversion Congress and Exposition 2009, pp. 3647-3652.
[61]X. Cao and L. Fan, "A novel flux-weakening control scheme based on the fuzzy logic of PMSM drive," in International Conference on Mechatronics and Automation, 2009, pp. 1228-1232.
[62]Y. Inoue, S. Morimoto, and M. Sanada, "Comparative Study of PMSM Drive Systems Based on Current Control and Direct Torque Control in Flux-Weakening Control Region," IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2382-2389, 2012.
[63]D. Hu, L. Zhu, and L. Xu, "Maximum Torque per Volt operation and stability improvement of PMSM in deep flux-weakening Region," in IEEE Energy Conversion Congress and Exposition 2012, pp. 1233-1237.
[64]S. Kim, Y. Lee, W. K. Choi, M. S. Kwak, Y. K. Lee, and J. K. Seok, "Maximum voltage utilization of IPMSMs using modulating voltage scalability for wide flux weakening applications," in IEEE Energy Conversion Congress and Exposition 2012, pp. 809-814.
[65]L. Xu and S. Li, "A fast response torque control for interior permanent-magnet synchronous motors in extended flux-weakening operation regime," in IEEE International Electric Machines and Drives Conference (Cat. No.01EX485), 2001, pp. 33-36.
[66]F. Caricchi, F. Crescimbini, F. G. Capponi, and L. Solero, "Permanent-magnet, direct-drive, starter/alternator machine with weakened flux linkage for constant-power operation over extremely wide speed range," in Conference Record of the IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), 2001, vol. 3, pp. 1626-1633 vol.3.
[67]J. M. Kim, K. Park, S. J. Kang, S. K. Sul, and J. L. Kwon, "Improved dynamic performance of interior permanent magnet synchronous motor drive in flux-weakening operation," in PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, 1996, vol. 2, pp. 1562-1567 vol.2.
[68]F. Briz, A. Diez, M. W. Degner, and R. D. Lorenz, "Current and flux regulation in field-weakening operation [of induction motors]," IEEE Transactions on Industry Applications, vol. 37, no. 1, pp. 42-50, 2001.
[69]S. Morimoto, Y. Takeda, T. Hirasa, and K. Taniguchi, "Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity," IEEE Transactions on Industry Applications, vol. 26, no. 5, pp. 866-871, 1990.
[70]S. Morimoto, M. Sanada, and Y. Takeda, "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator," IEEE Transactions on Industry Applications, vol. 30, no. 4, pp. 920-926, 1994.
[71]J. Holtz, W. Lotzkat, and A. M. Khambadkone, "On continuous control of PWM inverters in the overmodulation range including the six-step mode," IEEE Transactions on Power Electronics, vol. 8, no. 4, pp. 546-553, 1993.
[72]B. K. Bose, "A high-performance inverter-fed drive system of an interior permanent magnet synchronous machine," IEEE Transactions on Industry Applications, vol. 24, no. 6, pp. 987-997, 1988.
[73]B.-H. Bae, N. Patel, S. Schulz, and S.-K. Sul, "New field weakening technique for high saliency interior permanent magnet motor," in 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference., 2003, vol. 2, pp. 898-905 vol.2.
[74]J. M. Kim and S. K. Sul, "Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation," IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 43-48, 1997.
[75]S. Bolognani, S. Calligaro, R. Petrella, and F. Pogni, "Flux-weakening in IPM motor drives: Comparison of state-of-art algorithms and a novel proposal for controller design," in Proceedings of the 2011 14th European Conference on Power Electronics and Applications, 2011, pp. 1-11.
[76]H. Shoudao, C. Ziqiang, H. Keyuan, and G. Jian, "Maximum torque per ampere and flux-weakening control for PMSM based on curve fitting," in 2010 IEEE Vehicle Power and Propulsion Conference, 2010, pp. 1-5.
[77]W. Wang, J. Zhang, and M. Cheng, "Line-modulation-based flux-weakening control for permanent-magnet synchronous machines," IET Power Electronics, vol. 11, no. 5, pp. 930-936, 2018.
[78]J. Lin, Q. Tu, X. Feng, and K. Duan, "An Outer Voltage-Loop Flux-Weakening Control Based on Over-Modulation of the Permanent Magnet Synchronous Motor," in International Conference on Computer Science and Mechanical Automation, 2015, pp. 285-291.
[79]Y. Seki, K. Ohishi, and Y. Yokokura, "Quick and stable speed control of SPMSM based on current differential signal and extension of DC-link voltage utilization in flux-weakening region," in IEEE International Conference on Mechatronics 2015, pp. 709-714.
[80]F. G. Capponi, G. Borocci, G. D. Donato, and F. Caricchi, "Closed-loop, flux weakening control for hybrid excitation synchronous machines," in IEEE Energy Conversion Congress and Exposition 2015, pp. 5271-5278.
[81]P. Dey, M. Datta, and N. Fernando, "Comparisons of PI and PR current controllers based flux weakening to limit DC-link capacitor overvoltage in PMSG based wind energy system," in IEEE Innovative Smart Grid Technologies - Asia 2016, pp. 29-34.
[82]T. S. Kwon, G. Y. Choi, M. S. Kwak, and S. K. Sul, "Novel Flux-Weakening Control of an IPMSM for Quasi-Six-Step Operation," IEEE Transactions on Industry Applications, vol. 44, no. 6, pp. 1722-1731, 2008.
[83]Y. C. Kwon, S. Kim, and S. K. Sul, "Voltage Feedback Current Control Scheme for Improved Transient Performance of Permanent Magnet Synchronous Machine Drives," IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3373-3382, 2012.
[84]G. Chen and S. Yang, "Phase Voltage Measurement for Permanent Magnet Machine Sensorless Drive using Controller Capture Modulator," IEEE Transactions on Industrial Electronics, pp. 1-1, 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔