跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/10 18:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張嘉良
研究生(外文):Chia-Liang Chang
論文名稱:浮游生物於微流元件中對點狀營養鹽擴散源的趨向遷移行為之討論
論文名稱(外文):On the Chemotaxis of K. Veneficum in a Microfluidic Device with a Point Source of Nutrient
指導教授:孫珍理
指導教授(外文):Chen-li Sun
口試委員:王翔郁謝志豪
口試委員(外文):Hsiang-Yu WangChih-Hao Hsieh
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:303
中文關鍵詞:微流元件浮游生物運動趨化性卡羅藻濃度梯度營養鹽濃度
DOI:10.6342/NTU201903335
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微流元件提供浮游生物點狀營養鹽濃度,觀察經6小時以上之飢餓或無飢餓狀態的浮游生物K. veneficum (CCMP426) 在不同營養鹽濃度環境下的趨化性遷移行為。微流元件結構包含了T型流道與營養鹽供給流道,我們利用改變供給營養鹽的體積流率及其濃度,在T型流道內產生不同濃度分布,將飢餓或無飢餓狀態下的浮游生物置入 1倍或0倍濃度(海水)的培養液中,觀察其趨化性隨時間的演變。
實驗結果顯示,在T型流道置入處於0倍濃度培養液中飢餓狀態下的浮游生物,而營養鹽供給流道通入1X之營養鹽的條件下,浮游生物在高濃度與高濃度梯度區域集中,代表浮游生物因飢餓會往1倍濃度之營養鹽源移動,但在浮游生物的活動力表現在速度上面並無太大差異,表示浮游生物提供營養鹽並不會影響浮游生物活動表現。然而不論在整體或局部遷移行為中,在以 =10 l min-1通入5X或10X的高濃度的營養鹽時,浮游生物皆有遠離營養鹽源的趨勢,代表浮游生物會因較高的濃度使細胞內外的滲透壓差改變過大而遠離營養鹽源。當體積流率增加時,由於對T型流道的擾動與空間上整體濃度的提高,使浮游生物族群密度有顯著的影響。當無飢餓狀態的浮游生物處在原始培養液(1X)中,對外界環境改變有較高的敏感度,在不同局部濃度或濃度梯度之族群密度的變化較明顯,族群密度隨不同的營養鹽濃度改變之差異也較大。本研究所得之結果將有助於釐清浮游生物主動游泳行為與環境濃度梯度場之關係。
In this work, we used a microfluidic device to produce various nutrient field from a point source for comparisum, and study the chemotactic behavior of K. veneficum (CCMP426). Planktonic cells are introduced after starving for 6 hours and placed in the culture medium or seawater.The microfluidic device comprised a T channel and a nutrient channel. Nutrient is injected with different volumetric flow rate and concentration so that the distribution of nutrient in the T channel is varied.
The results show that higher density of starving K. Veneficum can be found in the regions of high nutrient concentration and concentration gradient when they are originally introduced in seawater with supplied to the nutrient channel.When the source of nutrient increases to 5X or 10X and is delivered at higher flow rate, planktonic cells start to exhibit negative chemotaxis, beacuase the difference osmotic pressure between inner and outer cell. The results show that starving planktonic cells seek for high concentration of nutrient up to a certain level, but tend to avoid regions with extra-high concentration. The increased volumetric flow rate will effect on the density of the planktonic cells significantly, due to the disturbance of the T channel and the increased concentration in overall space.
When the plankton cells without starvation in the original culture medium (1X), it has higher sensitivity to react environment changing, and the difference of planktonic density at different local concentrations or concentration gradients is more obvious. The density of planknic cells also varies with different concentration of nutrients obviously.
誌謝 ii
摘要 iv
Abstract v
目錄 vi
符號索引 viii
圖目錄 xii
第一章 導論 1
1.1前言 1
1.2文獻回顧 2
1.2.1 K. veneficum 2
1.2.2 研究趨化性之微流元件設計 3
1.2.3 趨化性對細菌與浮游生物之影響 7
1.3研究動機 8
第二章 元件製程與實驗程序 9
2.1 微流道的設計與製作 9
2.1.1 微流道設計 9
2.1.2 矽晶圓清洗 9
2.1.3 母模製作 10
2.1.4 PDMS製程 12
2.2 實驗架構 13
2.2.1 流體驅動裝置 13
2.2.2 倒立式顯微鏡 14
2.2.3 影像擷取系統 14
2.3 實驗量測與分析程序 15
2.3.1 濃度量化校正實驗 15
2.3.2 濃度場量測實驗 17
2.3.3 濃度場梯度量化 19
2.3.4 浮游生物溶液與培養液調製程序 19
2.3.5 在不同營養鹽及飢餓條件之浮游生物運動隨時間變化之實驗 22
2.3.6 浮游生物追蹤與計數程序 22
2.3.6 含浮游生物的培養液之族群密度分析程序 24
2.3.7 浮游生物運動行為之分析程序 24
2.4不確定性分析 26
2.4.1 體積流率的不確定性 27
2.4.2 正規化濃度的不確定性 27
2.4.3 平均正規化影像灰階值之不確定性 29
2.4.4 營養鹽正規化濃度分布的不確定性 30
2.4.5 影像分析之濃度梯度的不確定性 31
2.4.6 含浮游生物的培養液之正規化族群密度的不確定性 32
2.4.7 浮游生物位移的不確定性 34
2.4.8 浮游生物運動速度的不確定性 34
2.4.9 浮游生物運動方向的不確定性 35
2.4.10 相關係數的不確定性 35
第三章 實驗結果 36
3.1濃度場量測結果與梯度場 36
3.1.1 = 1 ml min-1之濃度場量測結果與梯度場 36
3.1.2 = 10 ml min-1之濃度場量測結果與梯度場 38
3.2浮游生物的整體遷移行為 39
3.2.1 浮游生物游泳方向的機率密度分布 40
3.2.2 浮游生物角度的平均游泳速度分布 43
3.2.3 浮游生物游泳速度的機率密度分布 46
3.2.4 浮游生物正規化密度隨時間之變化 48
3.2.5 整體遷移行為之討論 50
3.3 浮游生物的局部遷移行為 53
3.3.1 浮游生物族群密度在不同營養鹽濃度下的改變 53
3.3.2 浮游生物族群密度在不同營養鹽濃度梯度下的改變 57
3.3.3 浮游生物游泳速度在不同營養鹽濃度下的改變 60
3.3.4 浮游生物游泳速度在不同營養鹽濃度梯度下的改變 63
3.3.5 局部遷移行為之討論 66
第四章 結論與建議 70
4.1 結論 70
4.2 建議 71
參考文獻 72
附錄 A 77
附表 115
附圖 118
[1]P. G. Falkowski, "The role of phytoplankton photosynthesis in global biogeochemical cycles," Photosynthesis Research, vol. 39, no. 3, pp. 235-258, 1994. (doi: 10.1007/BF00014586)
[2]D. M. Karl, E. A. Laws, P. Morris, P. J. l. Williams, and S. Emerson, "Metabolic balance of the open sea," Nature, vol. 426, p. 32, 2003. (doi: 10.1038/426032a)
[3]G. M. Hallegraeff, "A review of harmful algal blooms and their apparent global increase," Phycologia, vol. 32, no. 2, pp. 79-99, 1993. (doi: 10.2216/i0031-8884-32-2-79.1)
[4]N. Li Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. Van De Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nature Biotechnology, vol. 20, p. 826, 2002. (doi: 10.1038/nbt712)
[5]G.-x. Zheng, Y.-j. Li, L.-l. Qi, X.-m. Liu, H. Wang, S.-p. Yu, and Y.-h. Wang, "Marine phytoplankton motility sensor integrated into a microfluidic chip for high-throughput pollutant toxicity assessment," Marine Pollution Bulletin, vol. 84, no. 1, pp. 147-154, 2014. (doi: https://doi.org/10.1016/j.marpolbul.2014.05.019)
[6]S. Dryl, "Effects of adaptation to environment on chemotaxis of paramecium caudatum," Acta Biol Exptl, vol. 19, pp. 83-93, 1959.
[7]A. R. Place, H. A. Bowers, T. R. Bachvaroff, J. E. Adolf, J. R. Deeds, and J. Sheng, "Karlodinium veneficum—The little dinoflagellate with a big bite," Harmful Algae, vol. 14, pp. 179-195, 2012. (doi: https://doi.org/10.1016/j.hal.2011.10.021)
[8]T. Bergholtz, N. Daugbjerg, Ø. Moestrup, and M. Fernández-Tejedor, "On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition," Journal of Phycology, vol. 42, no. 1, pp. 170-193, 2006. (doi: 10.1111/j.1529-8817.2006.00172.x)
[9]A. S. Li, D. Stoecker, and J. Adolf, "Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum," Aquatic Microbial Ecology, vol. 19, pp. 163-176, 1999. (doi: 10.3354/ame019163)
[10]J. E. Adolf, D. K. Stoecker, and L. W. Harding Jr, "Autotrophic growth and photoacclimation in Karlodinium micrum (dinophyceae) and Storeatula major (cryptophyceae)," Journal of Phycology, vol. 39, no. 6, pp. 1101-1108, 2003. (doi: 10.1111/j.0022-3646.2003.02-086.x)
[11]A. Li, D. K. Stoecker, and D. W. Coats, "Use of the ‘Food vacuole content’ method to estimate grazing by the mixotrophic dinoflagellate gyrodinium galatheanum on cryptophytes," Journal of Plankton Research, vol. 23, no. 3, pp. 303-318, 2001. (doi: 10.1093/plankt/23.3.303)
[12]J. E. Adolf, C. L. Yeager, W. D. Miller, M. E. Mallonee, and L. W. Harding, "Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USA," Estuarine, Coastal and Shelf Science, vol. 67, no. 1, pp. 108-122, 2006. (doi: https://doi.org/10.1016/j.ecss.2005.11.030)
[13]J. E. Adolf, D. Krupatkina, T. Bachvaroff, and A. R. Place, "Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum," Harmful Algae, vol. 6, no. 3, pp. 400-412, 2007. (doi: https://doi.org/10.1016/j.hal.2006.12.003)
[14]R. Waggett and P. Tester, "Anti-grazing properties of the toxic dinoflagellate Karlodinium veneficum during predator-prey interactions with the copepod Acartia tonsa," Marine Ecology Progress Series, vol. 366, pp. 31-42, 2008. (doi: 10.3354/meps07518)
[15]J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, "A dinoflagellate exploits toxins to immobilize prey prior to ingestion," Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 2082-2087, 2010. (doi: 10.1073/pnas.0912254107)
[16]J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, "Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates," Proceedings of the National Academy of Sciences, vol. 104, no. 44, p. 17512, 2007.
[17]N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, "Generation of solution and surface gradients using microfluidic systems," Langmuir, vol. 16, no. 22, pp. 8311-8316, 2000. (doi: 10.1021/la000600b)
[18]D. Irimia, S.-Y. Liu, W. G. Tharp, A. Samadani, M. Toner, and M. C. Poznansky, "Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients," Lab on a Chip, vol. 6, no. 2, pp. 191-198, 2006. (doi: 10.1039/B511877H)
[19]C. Joanne Wang, X. Li, B. Lin, S. Shim, G.-l. Ming, and A. Levchenko, "A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues," Lab on a Chip, vol. 8, no. 2, pp. 227-237, 2008. (doi: 10.1039/B713945D)
[20]G. M. Walker, J. Sai, A. Richmond, M. Stremler, C. Y. Chung, and J. P. Wikswo, "Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator," Lab on a Chip, vol. 5, no. 6, pp. 611-618, 2005. (doi: 10.1039/B417245K)
[21]T. M. Keenan, C. W. Frevert, A. Wu, V. Wong, and A. Folch, "A new method for studying gradient-induced neutrophil desensitization based on an open microfluidic chamber," Lab on a Chip, vol. 10, no. 1, pp. 116-122, 2010. (doi: 10.1039/b913494h)
[22]W. Saadi, S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon, "Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber," Biomedical Microdevices, vol. 9, no. 5, pp. 627-635, 2007. (doi: 10.1007/s10544-007-9051-9)
[23]B. Mosadegh, C. Huang, J. W. Park, H. S. Shin, B. G. Chung, S.-K. Hwang, K.-H. Lee, H. J. Kim, J. Brody, and N. L. Jeon, "Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels," Langmuir, vol. 23, no. 22, pp. 10910-10912, 2007. (doi: 10.1021/la7026835)
[24]S.-Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M. L. Shuler, and M. Wu, "A hydrogel-based microfluidic device for the studies of directed cell migration," Lab on a Chip, vol. 7, no. 6, pp. 763-769, 2007. (doi: 10.1039/B618463D)
[25]M. Kim, M. Jia, Y. Kim, and T. Kim, "Rapid and accurate generation of various concentration gradients using polydimethylsiloxane-sealed hydrogel device," Microfluidics and Nanofluidics, vol. 16, no. 4, pp. 645-654, 2014. (doi: 10.1007/s10404-013-1265-y)
[26]Y. Ge, Q. An, Y. Gao, Y. Chen, and D. Li, "A microfluidic device for generation of chemical gradients," Microsystem Technologies, vol. 21, no. 8, pp. 1797-1804, 2015. (doi: 10.1007/s00542-014-2287-4)
[27]J. J. VanDersarl, A. M. Xu, and N. A. Melosh, "Rapid spatial and temporal controlled signal delivery over large cell culture areas," Lab on a Chip, vol. 11, no. 18, pp. 3057-3063, 2011. (doi: 10.1039/C1LC20311H)
[28]P. Chang, K. Chang, C. Lin, P. Shih, C. Liu, W. Hsu, S. Fan, C. Li, C. Tien, H. Huang, and D. Yao, "Fabrication of 3D microfluidic chip integrating concentration gradient design and perfusion system for embryo coculture with stromal cells," in Proceedings of 2012 IEEE 6th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), Imperial Queen''s Park Hotel in Bangkok, Thailand, 4-7 Nov. 2012, Year, pp. 32-35
[29]D. Huh, H. J. Kim, J. P. Fraser, D. E. Shea, M. Khan, A. Bahinski, G. A. Hamilton, and D. E. Ingber, "Microfabrication of human organs-on-chips," Nature Protocols, vol. 8, p. 2135, 2013. (doi: 10.1038/nprot.2013.137)
[30]H. Jeon, Y. Lee, S. Jin, S. Koo, C.-S. Lee, and J. Y. Yoo, "Quantitative analysis of single bacterial chemotaxis using a linear concentration gradient microchannel," Biomedical microdevices, vol. 11, no. 5, pp. 1135-1143, 2009. (doi: 10.1007/s10544-009-9330-8)
[31]H. Mao, P. S. Cremer, and M. D. Manson, "A sensitive, versatile microfluidic assay for bacterial chemotaxis," Proceedings of the National Academy of Sciences, vol. 100, no. 9, p. 5449, 2003.
[32]T. W. Grebe and J. Stock, "Bacterial chemotaxis: The five sensors of a bacterium," Current Biology, vol. 8, no. 5, pp. R154-R157, 1998. (doi: https://doi.org/10.1016/S0960-9822(98)00098-0)
[33]T. Long and R. M. Ford, "Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor," Environmental Science and Technology, vol. 43, no. 5, pp. 1546-1552, 2009. (doi: 10.1021/es802558j)
[34]R. Stocker, J. R. Seymour, A. Samadani, D. E. Hunt, and M. F. Polz, "Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches," Proceedings of the National Academy of Sciences, vol. 105, no. 11, p. 4209, 2008.
[35]R. D. Sjoblad, I. Chet, and R. Mitchell, "Quantitative assay for algal chemotaxis," Applied and Environmental Microbiology, vol. 36, no. 6, p. 847, 1978.
[36]MATLAB, "version 9.5 (R2018b)": The MathWorks Inc., 2009.
[37]H. Aref and S. Balachandar, "A First Course in Computational Fluid Dynamics", Cambridge: Cambridge University Press, 2017.
[38]S.-W. Li, 2016, "On the Planktonic Locomotion in a Microfluidic Device," M.S Thesis, Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan.
[39]J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, "Fiji: an open-source platform for biological-image analysis," Nature Methods, vol. 9, p. 676, 2012. (doi: 10.1038/nmeth.2019)
[40]N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-66, 1979. (doi: 10.1109/TSMC.1979.4310076)
[41]Automatic Particle counting. Available: https://imagej.net/Particle_Analysis
[42]J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, "TrackMate: An open and extensible platform for single-particle tracking," Methods, vol. 115, pp. 80-90, 2017. (doi: https://doi.org/10.1016/j.ymeth.2016.09.016)
[43]D. G. Lowe, "Distinctive image features from scale-Invariant keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. (doi: 10.1023/B:VISI.0000029664.99615.94)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top