|
[1]P. G. Falkowski, "The role of phytoplankton photosynthesis in global biogeochemical cycles," Photosynthesis Research, vol. 39, no. 3, pp. 235-258, 1994. (doi: 10.1007/BF00014586) [2]D. M. Karl, E. A. Laws, P. Morris, P. J. l. Williams, and S. Emerson, "Metabolic balance of the open sea," Nature, vol. 426, p. 32, 2003. (doi: 10.1038/426032a) [3]G. M. Hallegraeff, "A review of harmful algal blooms and their apparent global increase," Phycologia, vol. 32, no. 2, pp. 79-99, 1993. (doi: 10.2216/i0031-8884-32-2-79.1) [4]N. Li Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. Van De Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nature Biotechnology, vol. 20, p. 826, 2002. (doi: 10.1038/nbt712) [5]G.-x. Zheng, Y.-j. Li, L.-l. Qi, X.-m. Liu, H. Wang, S.-p. Yu, and Y.-h. Wang, "Marine phytoplankton motility sensor integrated into a microfluidic chip for high-throughput pollutant toxicity assessment," Marine Pollution Bulletin, vol. 84, no. 1, pp. 147-154, 2014. (doi: https://doi.org/10.1016/j.marpolbul.2014.05.019) [6]S. Dryl, "Effects of adaptation to environment on chemotaxis of paramecium caudatum," Acta Biol Exptl, vol. 19, pp. 83-93, 1959. [7]A. R. Place, H. A. Bowers, T. R. Bachvaroff, J. E. Adolf, J. R. Deeds, and J. Sheng, "Karlodinium veneficum—The little dinoflagellate with a big bite," Harmful Algae, vol. 14, pp. 179-195, 2012. (doi: https://doi.org/10.1016/j.hal.2011.10.021) [8]T. Bergholtz, N. Daugbjerg, Ø. Moestrup, and M. Fernández-Tejedor, "On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition," Journal of Phycology, vol. 42, no. 1, pp. 170-193, 2006. (doi: 10.1111/j.1529-8817.2006.00172.x) [9]A. S. Li, D. Stoecker, and J. Adolf, "Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum," Aquatic Microbial Ecology, vol. 19, pp. 163-176, 1999. (doi: 10.3354/ame019163) [10]J. E. Adolf, D. K. Stoecker, and L. W. Harding Jr, "Autotrophic growth and photoacclimation in Karlodinium micrum (dinophyceae) and Storeatula major (cryptophyceae)," Journal of Phycology, vol. 39, no. 6, pp. 1101-1108, 2003. (doi: 10.1111/j.0022-3646.2003.02-086.x) [11]A. Li, D. K. Stoecker, and D. W. Coats, "Use of the ‘Food vacuole content’ method to estimate grazing by the mixotrophic dinoflagellate gyrodinium galatheanum on cryptophytes," Journal of Plankton Research, vol. 23, no. 3, pp. 303-318, 2001. (doi: 10.1093/plankt/23.3.303) [12]J. E. Adolf, C. L. Yeager, W. D. Miller, M. E. Mallonee, and L. W. Harding, "Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USA," Estuarine, Coastal and Shelf Science, vol. 67, no. 1, pp. 108-122, 2006. (doi: https://doi.org/10.1016/j.ecss.2005.11.030) [13]J. E. Adolf, D. Krupatkina, T. Bachvaroff, and A. R. Place, "Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum," Harmful Algae, vol. 6, no. 3, pp. 400-412, 2007. (doi: https://doi.org/10.1016/j.hal.2006.12.003) [14]R. Waggett and P. Tester, "Anti-grazing properties of the toxic dinoflagellate Karlodinium veneficum during predator-prey interactions with the copepod Acartia tonsa," Marine Ecology Progress Series, vol. 366, pp. 31-42, 2008. (doi: 10.3354/meps07518) [15]J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, "A dinoflagellate exploits toxins to immobilize prey prior to ingestion," Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 2082-2087, 2010. (doi: 10.1073/pnas.0912254107) [16]J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, "Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates," Proceedings of the National Academy of Sciences, vol. 104, no. 44, p. 17512, 2007. [17]N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, "Generation of solution and surface gradients using microfluidic systems," Langmuir, vol. 16, no. 22, pp. 8311-8316, 2000. (doi: 10.1021/la000600b) [18]D. Irimia, S.-Y. Liu, W. G. Tharp, A. Samadani, M. Toner, and M. C. Poznansky, "Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients," Lab on a Chip, vol. 6, no. 2, pp. 191-198, 2006. (doi: 10.1039/B511877H) [19]C. Joanne Wang, X. Li, B. Lin, S. Shim, G.-l. Ming, and A. Levchenko, "A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues," Lab on a Chip, vol. 8, no. 2, pp. 227-237, 2008. (doi: 10.1039/B713945D) [20]G. M. Walker, J. Sai, A. Richmond, M. Stremler, C. Y. Chung, and J. P. Wikswo, "Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator," Lab on a Chip, vol. 5, no. 6, pp. 611-618, 2005. (doi: 10.1039/B417245K) [21]T. M. Keenan, C. W. Frevert, A. Wu, V. Wong, and A. Folch, "A new method for studying gradient-induced neutrophil desensitization based on an open microfluidic chamber," Lab on a Chip, vol. 10, no. 1, pp. 116-122, 2010. (doi: 10.1039/b913494h) [22]W. Saadi, S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon, "Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber," Biomedical Microdevices, vol. 9, no. 5, pp. 627-635, 2007. (doi: 10.1007/s10544-007-9051-9) [23]B. Mosadegh, C. Huang, J. W. Park, H. S. Shin, B. G. Chung, S.-K. Hwang, K.-H. Lee, H. J. Kim, J. Brody, and N. L. Jeon, "Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels," Langmuir, vol. 23, no. 22, pp. 10910-10912, 2007. (doi: 10.1021/la7026835) [24]S.-Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M. L. Shuler, and M. Wu, "A hydrogel-based microfluidic device for the studies of directed cell migration," Lab on a Chip, vol. 7, no. 6, pp. 763-769, 2007. (doi: 10.1039/B618463D) [25]M. Kim, M. Jia, Y. Kim, and T. Kim, "Rapid and accurate generation of various concentration gradients using polydimethylsiloxane-sealed hydrogel device," Microfluidics and Nanofluidics, vol. 16, no. 4, pp. 645-654, 2014. (doi: 10.1007/s10404-013-1265-y) [26]Y. Ge, Q. An, Y. Gao, Y. Chen, and D. Li, "A microfluidic device for generation of chemical gradients," Microsystem Technologies, vol. 21, no. 8, pp. 1797-1804, 2015. (doi: 10.1007/s00542-014-2287-4) [27]J. J. VanDersarl, A. M. Xu, and N. A. Melosh, "Rapid spatial and temporal controlled signal delivery over large cell culture areas," Lab on a Chip, vol. 11, no. 18, pp. 3057-3063, 2011. (doi: 10.1039/C1LC20311H) [28]P. Chang, K. Chang, C. Lin, P. Shih, C. Liu, W. Hsu, S. Fan, C. Li, C. Tien, H. Huang, and D. Yao, "Fabrication of 3D microfluidic chip integrating concentration gradient design and perfusion system for embryo coculture with stromal cells," in Proceedings of 2012 IEEE 6th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), Imperial Queen''s Park Hotel in Bangkok, Thailand, 4-7 Nov. 2012, Year, pp. 32-35 [29]D. Huh, H. J. Kim, J. P. Fraser, D. E. Shea, M. Khan, A. Bahinski, G. A. Hamilton, and D. E. Ingber, "Microfabrication of human organs-on-chips," Nature Protocols, vol. 8, p. 2135, 2013. (doi: 10.1038/nprot.2013.137) [30]H. Jeon, Y. Lee, S. Jin, S. Koo, C.-S. Lee, and J. Y. Yoo, "Quantitative analysis of single bacterial chemotaxis using a linear concentration gradient microchannel," Biomedical microdevices, vol. 11, no. 5, pp. 1135-1143, 2009. (doi: 10.1007/s10544-009-9330-8) [31]H. Mao, P. S. Cremer, and M. D. Manson, "A sensitive, versatile microfluidic assay for bacterial chemotaxis," Proceedings of the National Academy of Sciences, vol. 100, no. 9, p. 5449, 2003. [32]T. W. Grebe and J. Stock, "Bacterial chemotaxis: The five sensors of a bacterium," Current Biology, vol. 8, no. 5, pp. R154-R157, 1998. (doi: https://doi.org/10.1016/S0960-9822(98)00098-0) [33]T. Long and R. M. Ford, "Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor," Environmental Science and Technology, vol. 43, no. 5, pp. 1546-1552, 2009. (doi: 10.1021/es802558j) [34]R. Stocker, J. R. Seymour, A. Samadani, D. E. Hunt, and M. F. Polz, "Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches," Proceedings of the National Academy of Sciences, vol. 105, no. 11, p. 4209, 2008. [35]R. D. Sjoblad, I. Chet, and R. Mitchell, "Quantitative assay for algal chemotaxis," Applied and Environmental Microbiology, vol. 36, no. 6, p. 847, 1978. [36]MATLAB, "version 9.5 (R2018b)": The MathWorks Inc., 2009. [37]H. Aref and S. Balachandar, "A First Course in Computational Fluid Dynamics", Cambridge: Cambridge University Press, 2017. [38]S.-W. Li, 2016, "On the Planktonic Locomotion in a Microfluidic Device," M.S Thesis, Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan. [39]J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, "Fiji: an open-source platform for biological-image analysis," Nature Methods, vol. 9, p. 676, 2012. (doi: 10.1038/nmeth.2019) [40]N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-66, 1979. (doi: 10.1109/TSMC.1979.4310076) [41]Automatic Particle counting. Available: https://imagej.net/Particle_Analysis [42]J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, "TrackMate: An open and extensible platform for single-particle tracking," Methods, vol. 115, pp. 80-90, 2017. (doi: https://doi.org/10.1016/j.ymeth.2016.09.016) [43]D. G. Lowe, "Distinctive image features from scale-Invariant keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. (doi: 10.1023/B:VISI.0000029664.99615.94)
|