(3.231.29.122) 您好!臺灣時間:2021/02/25 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳譽升
研究生(外文):Yu-sheng Chen
論文名稱:運用複合式投光之聚焦形貌量測系統與演算法研製
論文名稱(外文):Development of shape-from-focus profile measuring system and algorithms using hybrid pattern projection
指導教授:陳亮嘉
指導教授(外文):Liang-Chia Chen
口試委員:蕭金廷劉正良林世聰葉勝利
口試委員(外文):Jin-Ting HsiaoZheng-Liang LiuShig-Tsung LinSheng-Li Yeh
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:140
中文關鍵詞:自動化光學檢測複合式投光條紋頻率最佳化聚焦形貌量測法聚焦量測運算子
DOI:10.6342/NTU201902490
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
為實現穩健且高效率之自動化光學檢測,在本研究中建立了一完整顯微鏡系統。此系統具有主動式投射程式控制之圖案及執行垂直物鏡移動之能力,以達成高重複度及高適應性之量測。在系統建立之過程中曾產生各式問題,故於系統建立之章節中,問題產生之緣由及其對應之解決方式會被詳盡地介紹。舉例而言,為解決因數位微鏡設備引起之橫向光譜不連續問題,系統改採用柯勒照明模組以達到更佳的照明均質性及光譜連續性。
本研究之主要目的為使用聚焦量測形貌法重建同時具鏡面及粗糙面之樣本輪廓。為達成此目標,研究者提出由結合主動式及被動式投光樣本重建之複合式投光方法。樣本表面品質會先由一軟體運算方法及二維全聚焦影像進行辨別,再將正確的表面高度值分配至指定像素位置。此方法可有效的減少視場中之雜訊,故可提升重建之精確度。
除上述方法之外,本研究另提出數種運算方式以優化量測過程,其中包含投影條紋週期最佳化、創新式具焦量測運算子、及樣品表面反射率問題之解決方法。藉由此類運算過程,形貌重建之精確度、可靠度、及執行效率可獲得進一步的提升。
經由實驗結果證實,本研究建立之系統在二十倍放大倍率下具0.0047μm (1σ) 的重複度,0.497μm/pixel的空間解析度,以及介於1.28μm 與 0.64μm間的軸向解析度。除硬體表現以外,本研究所提出之方法與傳統方法所得成果之差異比較也一併呈現於章節中,且改良後之精密度增進可明確地被觀測。
In this research, a solid microscopic system is developed in the aim of achieving automated optical inspection. Such system has the capability of actively projecting the programmed pattern as well as executing vertical objective movement, along with the features of superior repeatability and adaptability. Numerous issues had emerged during the process of system establishment, and thus the encountered problems and corresponding solutions are also suggested in the article. For instance, to resolve the laterally spectral-dispersive issue caused by the digital micromirror device, a Kohler illumination module is harnessed to attain greater homogeneity and spatial integration property of the reflected beam.
The primary objective of this article is to reconstruct samples which contain both specular and diffusive surfaces within a single field of view by the shape from focus method. To achieve such target, a hybrid projection method is developed by the combination of the profiles constructed by active and passive illuminated surfaces. The texture of the profile will first be assessed by a numerical method through a two-dimensional all-in-focused image of the scene, then the correct topography will be allocated to designated pixels. The method can effectively reduce the shooting noise existence within the field, thus enhancing the precision in reconstruction.
Additional numerical methods are also developed in order to facilitate the measuring process. The approaches include the optimization of fringe period, a new focus measure operator, and a solution to reflectivity problem. By the application of such processes, the precision, reliability, and efficiency of the reconstruction can be further improved.
From experimental results, the repeatability of the system is evaluated as 0.0047μm (1σ) from three experiments, the spatial resolution is 0.497μm/pixel, and the axial resolution lies between 1.28μm and 0.64μm, under a magnification of 20 times. Aside from mechanical performances, the comparisons between ordinary and proposed approaches are also presented, where the proposed optimal pattern and the focus measure operator have evidently better precision than the compared ones.
Abstract 1
摘要 3
Acknowledgement 4
List of figures 8
List of tables 13
Chapter 1 Introduction 14
1.1 Background 14
1.1.1 Automated Optical Inspection (AOI) 14
1.1.2 Shape from Focus (SFF) – Overview 17
1.2 Motivation 18
1.3 Objective 18
1.4 Structure of thesis 19
Chapter 2 Literature Review 21
2.1 Confocal microscopy 21
2.1.1 Overview 21
2.2.2 Point scanning approaches 23
2.2.3 Line scanning approaches 25
2.2.4 Area scanning approaches 27
2.2.5 Utilization of transmissive spatial light modulators 31
2.2.6 Conclusion of confocal microscopy 34
2.2 Focus Measure Approaches 37
2.2.1 Gradient based operators 38
2.2.2 Laplacian based operators 39
2.2.3 Wavelet based operators 40
2.2.4 Statistics based operators 41
2.2.5 Conclusion of focus measure operators 42
2.3 Active Pattern Projection 43
2.4 Conclusion of literature review 47
Chapter 3 System establishment 49
3.1 Introduction to the measurement system 49
3.2 Programmable aperture array 50
3.3 Structure of the measurement system 53
Specifications of system 57
3.4 Encountered issues 58
3.4.1 Uneven defocusing 58
3.4.2 Lateral movement during depth scanning 63
3.5 Measurement procedures of half-specular samples 72
3.6 Conclusion of chapter 3. 75
Chapter 4 Arithmetic approaches 76
4.1 Optimized illumination pattern 76
4.2 A new focus measure operator 86
4.3 Identification of spectral and diffusive surface areas 95
4.4 Solutions to the reflectivity problem 101
4.5 Conclusion of chapter 4 105
Chapter 5 Experiment results and discussions 106
5.1 Analysis of measurement results 106
5.1.1 Performance evaluation of illumination combination 106
5.1.2 Performance evaluation of the optimized structured pattern 112
5.1.3 Performance evaluation of the new focus measure operator 115
5.1.4 Repeatability and resolution evaluation 123
5.2 Reconstruction of real-world specimens 130
5.3 Discussions 133
Chapter 6 Conclusion and Future works 136
6.1 Conclusion 136
6.2 Future works 137
Reference 142
A. K. Ruprecht, K. Korner, T. F. Wiesendanger, H.J. Tiziani, W. Osten. (2004). Chromatic confocal detection for high speed micro topography measurements.
A. Santos, C. Ortiz De Solorzano, J. J. Vaquero, J. M. Pena, N. Malpica, F. Del Pozo. (1997). Evaluation of autofocus functions in molecular cytogenetic analysis.
Automated Optical Inspection System Market by Type, Technology, Industry, and Region – Global Forecast to 2024. (December, 2018). https://bit.ly/2JzpKzY
C. M. Taylor, E. M. McCabe. (2001). Programmable array microscope employing two ferroelectric liquid crystal spatial light modulators.
Edmund Kohler calculator. (2019). https://www.edmundoptics.com.tw/resources/tech-tools/koehler-illumination/
G. Yang, B. J. Nelson. (2003). Wavelet-based autofocusing and unsupervised segmentation of microscopic images.
Global Automated Optical Inspection Market 2018 Revenue, Opportunity, Forecast and Value Chain 2025. (May, 7, 2019). https://on.mktw.net/2XUmoAM
GratingsRichardson. (2012). Technical Note 11 - Determination of the Blaze Wavelength.
I. Lertrusdachakul, Y. D. Fougerolle, O. Laligant. (2011). Dynamic (de)focused projection for three-dimensional reconstruction.
J. Geng. (2011). Structured-light 3D surface imaging: a tutorial.
K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada. (August, 1, 1993). Polymer-dispersed liquid crystal light valves for projection display. Optical Engineering, 32(8), (1993).
L. C. Chen, W. J. Kao. (2005). Development of white light confocal microscopy with innovative fringe projection for full-field micro surface profilometry.
M. Noguchi, S. K. Nayar. (1994). Microscopic shape from focus using active illumination.
M. Subbarao, T. S. Choi, A. Nikzad. (1993). Focusing techniques.
Micromechanics groupMIT. (2018). Phase-shifting Mirau interferometry.
N. Otsu. (1979). A threshold selection method from gray-level histograms.
P. J. Smith, C. M. Taylor, A. .J. Shaw, E. M. McCabe. (2000). Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator.
P. S. Toh. (2005). Confocal Imaging.
S. K. Nayar. (1992). Shape from focus system.
S. Pertuz. (January, 26, 2016). Defocus simulation. https://www.mathworks.com/matlabcentral/fileexchange/55095-defocus-simulation?s_tid=prof_contriblnk
S. Pertuz, D. Puig, MA. Garcia. (May, 2013). Analysis of focus measure operators for shape-from-focus.
S. Y. Lee, J. T. Yoo, Y. Kumar, S. W. Kim. (2009). Reduced Energy-Ratio Measure for Robust Autofocusing in Digital Camera.
T. Anton, V. Dmitry, N. Zoran, R. Alan, Q. Manuel, S. Stephen , P. Jonathan, S. Tim, R. Massimo, H. Sara, C. Devin, B. Carlos, G. Nicholas, B. Zach, Y. Sebastian. (2017). Evaluation of digital micromirror devices for use in space-based multiobject spectrometer application.
T. J. Chang, G. D. J. Su. (August, 24, 2017). A confocal microscope with programmable aperture arrays by polymer–dispersed liquid crystal. Proceedings Volume 10376, Novel Optical Systems Design and Optimization XX; 103760Q (2017).
T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, H. Ishida. (2002). High-speed 1-frame_ms scanning confocal microscope with a microlens and Nipkow disks.
tedpella.com - Critical_Dimension_Magnification_Standards. (2019). https://www.tedpella.com/calibration_html/CDMS-Critical_Dimension_Magnification_Standards.htm
TI - DLP6500FLQ configurations. (May, 30, 2019). http://www.ti.com/product/DLP6500FLQ
Y. Nakagawa, S. K. Nayar. (1994). Shape from Focus.
Y. S. Chou. (2018). Research on Design and optimization of the full-field chromatic confocal profilometry.
Y. Sun, S. Duthaler, B. J. Nelson. (2004). Autofocusing in computer microscopy: Selecting the optimal focus algorithm.
Z. Yang, A. Bielke, G. Häusler. (2016). Better three-dimensional inspection with structured illumination: speed.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔