(3.237.97.64) 您好!臺灣時間:2021/03/04 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾毅
研究生(外文):Yi Chung
論文名稱:模型預測控制與路徑規劃演算法之自動駕駛技術整合應用
論文名稱(外文):Application of Model Predictive Control and Path Planning to the Autonomous Vehicle Technique
指導教授:陽毅平陽毅平引用關係
口試委員:郭重顯黃緒哲李綱
口試日期:2019-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:133
中文關鍵詞:模型預測控制路徑規劃自動停車系統避障演算法
DOI:10.6342/NTU201902179
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究整合路徑規劃演算法與模型預測控制,開發出一套自動駕駛停車系統,
將Hybrid A*演算法與模型預測控制程式化,以ROS package的形式包裝於車控電腦Drive PX2中,本實驗所使用之車輛為工研院與中華汽車所開發的CPEV,將其車輛模型建置於車用模擬軟體PreScan之中,並透過ROS Network建立起windows與linux作業系統之間的通訊,由模擬軟體PreScan提供車輛狀態與環境數據給控制策略進行運算,經由控制器計算後將控制命令回傳至PreScan中,在兩系統之間建立路由。為了能測試路徑規劃演算之路徑可行性,以及模型預測控制器軌跡跟蹤的精確程度,本研究以模型迴路(Hardware-in-the-loop, HIL)進行整合的測試與驗證,為了增加模擬的真實性,串接方向盤、踏板等硬體設備,並設計一套手自動駕駛模式切換系統,讓駕駛者自由切換駕駛模式,並撰寫使用者介面,將停車場地圖顯示於RVIZ中,讓駕駛者能選擇欲停的車位。在避障策略中,透過RADAR感測器,遇到障礙物時採用緊急煞停,更新地圖並從新規劃路徑。本研究實現了將自動駕駛上層控制與下層控制,進行三種不同的情境下的實驗分別為正向停車、倒車入庫、避障停車,為了讓此系統更符合真實的行車結果,模擬的情境也根據真實的場域來建置。本研究完成自動駕駛模擬的軟硬體整合,並開發一套自動駕駛停車功能,也為後續自駕車子系統開發建立了驗證的平台。
This research integrates path planning algorithm and model predictive control, develops an autonomous driving parking system, and implement both algorithm in the car control computer Drive PX2 in the form of ROS package. The vehicle used in this research is CPEV, which developed by ITRI and China Motor. The vehicle model is built into the vehicle simulation software PreScan, and the communication between the Windows and the Linux operating system is established through the ROS Network. PreScan provides vehicle status and environmental data to the control strategy. After calculations, controller sends the control command back to PreScan, thus we establish a route between the two systems. In order to test the path feasibility of the path planning calculus and the accuracy of the model prediction controller trajectory tracking, this study uses the hardware-in-the-loop (HIL) for integration testing and verification, in order to increase the reality of the simulation, serially connected to the steering wheel, pedals and other hardware devices, and designed a hand-autonomous driving mode switching system, allowing the driver to freely switch the driving mode, and design the user interface, display the parking lot map in the RVIZ, allowing the driver to choose which parking space to park. In the obstacle avoidance strategy, through the RADAR sensor, emergency stops are used when encountering obstacles, the map is updated and the route is newly planned. In this study, the upper-level control and the lower-level control of the automatic driving are implemented. The experiments in three different scenarios are forward parking, reverse parking, and obstacle avoidance parking. In order to make the system more in line with the actual driving results, the simulated situation is also based on real field to build. This study completed the software and hardware integration of the automatic driving simulation, and developed an automatic driving parking function, and also established a verification platform for the subsequent self-driving subsystem development.
委員會審定 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
符號表 xii
1 第一章、緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.3 本文貢獻 6
1.4 論文章節摘要 7
2 第二章、系統架構與系統模型 9
2.1 車控電腦PX2 9
2.2 PreScan 10
2.3 ROS 13
2.4 車輛模型 15
2.5 輪胎模型 27
3 第三章、路徑規劃演算法 34
3.1 動態規劃與路徑規劃演算法 34
3.2 戴科斯徹演算法 36
3.3 A*演算法 37
3.4 Hybrid A *演算法 40
4 第四章、模型預測控制 49
4.1 模型預測控制架構 50
4.2 線性時變模型預測控制算法 52
4.3 非線性系統線性化 57
4.4 目標函數與限制方程式 61
4.5 最佳化求解 63
4.6 穩定度分析 67
5 第五章、 HIL行車模擬驗證 73
5.1 實驗架構與硬體介紹 73
5.2 實驗通訊介紹 78
5.3 實驗流程 80
5.4 實驗結果與討論 87
6 第六章 結論與未來展望 123
6.1 結論 123
6.2 未來展望 123
參考文獻 126
附錄 130
[1]T. Toroyan, M. M. Peden, and K. Iaych, "WHO launches second global status report on road safety," ed: BMJ Publishing Group Ltd, 2013.
[2]E. R. Teoh and A. K. J. T. i. p. Lund, "IIHS side crash test ratings and occupant death risk in real-world crashes," vol. 12, no. 5, pp. 500-507, 2011.
[3]J. M. Anderson, K. Nidhi, K. D. Stanley, P. Sorensen, C. Samaras, and O. A. Oluwatola, Autonomous vehicle technology: A guide for policymakers. Rand Corporation, 2014.
[4]D. A. Pomerleau, "Alvinn: An autonomous land vehicle in a neural network," in Advances in neural information processing systems, 1989, pp. 305-313.
[5]S. J. I. T. o. S. Baluja, Man, and C.-P. B. Cybernetics, "Evolution of an Artificial Neural Network Based Autonomous Land Vehicle Controller," vol. 26, no. 3, pp. 450-463, 1996.
[6]M. Bertozzi, A. Broggi, A. J. R. Fascioli, and A. systems, "Vision-based intelligent vehicles: State of the art and perspectives," vol. 32, no. 1, pp. 1-16, 2000.
[7]R. C. Smith and P. J. T. i. j. o. R. R. Cheeseman, "On the representation and estimation of spatial uncertainty," vol. 5, no. 4, pp. 56-68, 1986.
[8]S. Julier, J. Uhlmann, and H. F. J. I. T. o. a. c. Durrant-Whyte, "A new method for the nonlinear transformation of means and covariances in filters and estimators," vol. 45, no. 3, pp. 477-482, 2000.
[9]S. Thrun et al., "Stanley: The robot that won the DARPA Grand Challenge," vol. 23, no. 9, pp. 661-692, 2006.
[10]M. Montemerlo et al., "Junior: The stanford entry in the urban challenge," vol. 25, no. 9, pp. 569-597, 2008.
[11]J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi, "Towards a viable autonomous driving research platform," in 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 763-770: IEEE.
[12]D. Dolgov, S. Thrun, M. Montemerlo, and J. J. A. A. Diebel, "Practical search techniques in path planning for autonomous driving," vol. 1001, no. 48105, pp. 18-80, 2008.
[13]C. Urmson et al., "Autonomous driving in urban environments: Boss and the urban challenge," vol. 25, no. 8, pp. 425-466, 2008.
[14]R. Benenson and M. Parent, "Design of an urban driverless ground vehicle," in IEEE International Conference on Intelligent Robots Systems, 2008.
[15]J. Canny, "A new algebraic method for robot motion planning and real geometry," in 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), 1987, pp. 39-48: IEEE.
[16]P. Bhattacharya and M. L. Gavrilova, "Voronoi diagram in optimal path planning," in 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007), 2007, pp. 38-47: IEEE.
[17]P. E. Hart, N. J. Nilsson, B. J. I. t. o. S. S. Raphael, and Cybernetics, "A formal basis for the heuristic determination of minimum cost paths," vol. 4, no. 2, pp. 100-107, 1968.
[18]D. Gelperin, "On the Optimality of A Star," Artificial Intelligence, vol. 8, no. 1, p. 76, February 1977.
[19]R. Dechter and J. J. J. o. t. A. Pearl, "Generalized best-first search strategies and the optimality of A," vol. 32, no. 3, pp. 505-536, 1985.
[20]C. Goerzen, Z. Kong, B. J. J. o. I. Mettler, and R. Systems, "A survey of motion planning algorithms from the perspective of autonomous UAV guidance," vol. 57, no. 1-4, p. 65, 2010.
[21]N. Sariff and N. Buniyamin, "An overview of autonomous mobile robot path planning algorithms," in 2006 4th Student Conference on Research and Development, 2006, pp. 183-188: IEEE.
[22]P. Marin-Plaza, A. Hussein, D. Martin, and A. d. l. J. J. o. A. T. Escalera, "Global and local path planning study in a ros-based research platform for autonomous vehicles," vol. 2018, 2018.
[23]K. Kurzer, "Path Planning in Unstructured Environments: A Real-time Hybrid A* Implementation for Fast and Deterministic Path Generation for the KTH Research Concept Vehicle," ed, 2016.
[24]L. E. J. A. J. o. m. Dubins, "On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents," vol. 79, no. 3, pp. 497-516, 1957.
[25]J. Reeds and L. J. P. j. o. m. Shepp, "Optimal paths for a car that goes both forwards and backwards," vol. 145, no. 2, pp. 367-393, 1990.
[26]J.-C. Latombe, Robot motion planning. Springer Science & Business Media, 2012.
[27]S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[28]D. Dolgov and S. Thrun, "Autonomous driving in semi-structured environments: Mapping and planning," in 2009 IEEE International Conference on Robotics and Automation, 2009, pp. 3407-3414: IEEE.
[29]D. Dolgov, S. Thrun, M. Montemerlo, and J. J. T. I. J. o. R. R. Diebel, "Path planning for autonomous vehicles in unknown semi-structured environments," vol. 29, no. 5, pp. 485-501, 2010.
[30]P. Vadakkepat, K. C. Tan, and W. Ming-Liang, "Evolutionary artificial potential fields and their application in real time robot path planning," in Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), 2000, vol. 1, pp. 256-263: IEEE.
[31]S. M. LaValle, "Rapidly-exploring random trees: A new tool for path planning," 1998.
[32]S. X. Yang, C. J. I. T. o. S. Luo, Man,, and P. B. Cybernetics, "A neural network approach to complete coverage path planning," vol. 34, no. 1, pp. 718-724, 2004.
[33]S. Gim, L. Adouane, S. Lee, J.-P. J. J. o. I. Dérutin, and R. Systems, "Clothoids composition method for smooth path generation of car-like vehicle navigation," vol. 88, no. 1, pp. 129-146, 2017.
[34]J. P. Rastelli, R. Lattarulo, and F. Nashashibi, "Dynamic trajectory generation using continuous-curvature algorithms for door to door assistance vehicles," in 2014 IEEE Intelligent Vehicles Symposium Proceedings, 2014, pp. 510-515: IEEE.
[35]A. Piazzi, C. L. Bianco, M. Bertozzi, A. Fascioli, and A. J. I. T. o. I. T. S. Broggi, "Quintic G/sup 2/-splines for the iterative steering of vision-based autonomous vehicles," vol. 3, no. 1, pp. 27-36, 2002.
[36]C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, "Trajectory modification considering dynamic constraints of autonomous robots," in ROBOTIK 2012; 7th German Conference on Robotics, 2012, pp. 1-6: VDE.
[37]R. Attia, R. Orjuela, and M. J. V. S. D. Basset, "Combined longitudinal and lateral control for automated vehicle guidance," vol. 52, no. 2, pp. 261-279, 2014.
[38]M. a. Sugeno, M. J. F. s. Nishida, and systems, "Fuzzy control of model car," vol. 16, no. 2, pp. 103-113, 1985.
[39]A. De Luca, G. Oriolo, and C. Samson, "Feedback control of a nonholonomic car-like robot," in Robot motion planning and control: Springer, 1998, pp. 171-253.
[40]R. C. Coulter, "Implementation of the pure pursuit path tracking algorithm," Carnegie-Mellon UNIV Pittsburgh PA Robotics INST1992.
[41]D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. J. A. Scokaert, "Constrained model predictive control: Stability and optimality," vol. 36, no. 6, pp. 789-814, 2000.
[42]C. E. Garcia, D. M. Prett, and M. J. A. Morari, "Model predictive control: theory and practice—a survey," vol. 25, no. 3, pp. 335-348, 1989.
[43]A. Bemporad, "Model predictive control design: New trends and tools," in Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 6678-6683: IEEE.
[44]S. Di Cairano, H. E. Tseng, D. Bernardini, and A. J. I. T. o. C. S. T. Bemporad, "Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain," vol. 21, no. 4, pp. 1236-1248, 2013.
[45]P. Falcone, H. Eric Tseng, F. Borrelli, J. Asgari, and D. J. V. S. D. Hrovat, "MPC-based yaw and lateral stabilisation via active front steering and braking," vol. 46, no. S1, pp. 611-628, 2008.
[46]F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. J. I. J. o. V. A. S. Hrovat, "MPC-based approach to active steering for autonomous vehicle systems," vol. 3, no. 2, pp. 265-291, 2005.
[47]P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, D. J. I. J. o. R. Hrovat, and N. C. I. A. Journal, "Linear time‐varying model predictive control and its application to active steering systems: Stability analysis and experimental validation," vol. 18, no. 8, pp. 862-875, 2008.
[48]V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Borrelli, "Linear model predictive control for lane keeping and obstacle avoidance on low curvature roads," in 16th international IEEE conference on intelligent transportation systems (ITSC 2013), 2013, pp. 378-383: IEEE.
[49]J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, "Kinematic and dynamic vehicle models for autonomous driving control design," in 2015 IEEE Intelligent Vehicles Symposium (IV), 2015, pp. 1094-1099: IEEE.
[50]C. E. Beal and J. C. J. I. T. o. C. S. T. Gerdes, "Model predictive control for vehicle stabilization at the limits of handling," vol. 21, no. 4, pp. 1258-1269, 2013.
[51]N. Haraus, "Performance Analysis of Constant Speed Local Abstacle Avoidance Controller Using a MPC Algorithym on Granular Terrain," 2017.
[52]E. Velenis and P. Tsiotras, "Optimal velocity profile generation for given acceleration limits; the half-car model case," in 2005 IEEE International Symposium on Industrial Electronics, 2005, pp. 355-360: Citeseer.
[53]M. J. D. A. I. Lazar, "Model predictive control of hybrid systems: Stability and robustness," vol. 68, ed, 2006.
[54]R. Zhang, F. Rossi, and M. Pavone, "Model predictive control of autonomous mobility-on-demand systems," in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 1382-1389: IEEE.
[55]H. Van der Auweraer, J. Anthonis, S. De Bruyne, and J. J. E. w. C. Leuridan, "Virtual engineering at work: the challenges for designing mechatronic products," vol. 29, no. 3, pp. 389-408, 2013.
[56]L. Guzzella and A. Sciarretta, Vehicle propulsion systems. Springer, 2007.
[57]H. Pacejka, Tire and Vehicle Dynamics. Elsevier, 2005.
[58] Maciejowski, Jan Marian, Predictive control: with constraints, Pearson, 2013
[59] Qin, S Joe, Badgwell, Thomas A Control engineering practice, industrial model predictive control technology, 2003
[60] EL HAJJAJI, A.; OULADSINE, M. Modeling human vehicle driving by fuzzy logic for standardized ISO double lane change maneuver. In: Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat. No. 01TH8591). IEEE, 2001. p. 499-503.
[61] MARINO, Riccardo; SCALZI, Stefano; NETTO, Mariana. Nested PID steering control for lane keeping in autonomous vehicles. Control Engineering Practice, 2011, 19.12: 1459-1467.
[62] S. Yu, T. Qu and H. Chen, "Stability of infinite horizon MPC with incremental input constraints," Proceedings of the 32nd Chinese Control Conference, Xi''an, 2013, pp. 4125-4130.
[63] Liu, Rui, and Jianmin Duan. "A path tracking algorithm of intelligent vehicle by preview strategy." Proceedings of the 32nd Chinese Control Conference. IEEE, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔