(3.238.7.202) 您好!臺灣時間:2021/03/02 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何峻瑋
研究生(外文):Jyun-Wei He
論文名稱:移動式感應加熱應用於熱滾壓平板微結構的應用
論文名稱(外文):The Application of Moving Induction Heating in Roll-to-Plate Embossing for Microstructure Replication
指導教授:楊申語楊申語引用關係
指導教授(外文):Sen-Yeu Yang
口試委員:粘世智韓麗龍張致遠
口試日期:2019-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:132
中文關鍵詞:熱壓印成型移動式感應加熱滾對板施壓微結構複製
DOI:10.6342/NTU201902226
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微熱壓成型技術為複製高分子微結構元件之重要技術,具有製程簡單、成本低廉與高結構複製率等優勢。在傳統熱壓成型技術上,壓印方式為板對板的機構,易受摩擦力、壓板表面及平行度影響,有壓力分佈不均且壓印面積受限等缺點,加上熱壓機的壓板加熱與冷卻需整塊熱盤進行升、降溫動作,導致成型週期過長且耗費能源。
本研究使用滾輪對移動式平台進行施壓,擴大壓印面積與壓力均勻性,且使用感應加熱技術進行快速升溫,並搭配自主設計的真空吸附水冷平台進行快速降溫,之後將裝置與Arduino做結合,製作出自動化移動式感應加熱結合水路冷卻微結構壓印設備。
在壓印實驗上,我們以相同的進給速率164 mm/min,藉由調整功率和擺放磁場集中器的方式,提升模具整體的溫度均勻性,將鎳模具的最大溫差控制在22℃ 內。且為避免基材在壓印時有翹曲情況發生,本實驗開發真空吸附水冷平台,利用矽膠板將基材與模具吸附在平之上,解決成品變形問題。而在腔體設計上我們導入水冷系統,於腔體側面設計水路進行水冷降溫,解決降溫耗時問題。最後,自動化設備的導入,不僅可減少手動壓印時的操作誤差,也可更精確的掌握高週波的開關與壓印時間,確保每張微結構薄膜產品的品質與穩定性。
在實際應用上,本設備能複製V型溝槽與微透鏡陣列結構於PC基材上,其微結構面積可達100×100 mm2,轉寫率可超過95%以上,並藉由成型視窗的建立,證明自動化移動式感應加熱結合水路冷卻微結構壓印設備可應用於高分子光學元件之製備與可行性。
Traditional hot embossing is a popular technology for fabrication of polymer micro-structured components. It has the advantages of simple steps, high replication rate, and low cost. However, the traditional hot embossing employs plate-to-plate contact, inducing uneven pressure distribution. Moreover, it requires heating and cooling a whole hot plate which causes long cycle time and high energy cost.
In this study, we used a roller to imprint the microstructure, combined with the mobile platform to increase embossed area and pressure uniformity. In order to prevent a film warpage from heat/cool effects, the induction heating facility and a platform with vacuum and water cooling were employed. To improve the temperature uniformity, the ferrite were placed in the induction coil as a field concentrator. The maximum temperature difference is less than 22 °C. Programming control has been used facilitate automated mobile induction heating imprinting equipment, reducing the human operational errors during the embossing process.
The V-cut and microlens array microstructures were replicated on the 100×100 mm2 PC substrate. The replication rate can exceed 95%. The operation window was investigated. This study proves that the facility integrating induction heating and platform with vacuum and water cooling can be applied to the fabrication of polymer optical components with microstructure.
論文口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 xv
第 1 章 導論 1
1.1 前言 1
1.2 傳統微熱壓成型 3
1.3 滾輪壓印成型技術 5
1.4 快速加熱技術 7
1.5 研究動機與目的 8
1.5.1 研究動機 8
1.5.2 研究目的 8
1.6 論文內容與架構 9
第 2 章 文獻回顧 10
2.1 壓印成型技術 10
2.1.1 紅外線加熱技術 10
2.1.2 雷射壓印成型技術 12
2.1.3 超音波震動熱壓成型技術 13
2.1.4 高週波感應加熱技術 14
2.1.5 滾輪結合熱壓成型微結構技術 21
2.2 感應加熱的理論基礎 24
2.2.1 電磁感應 24
2.2.2 焦耳定律、歐姆定律與電功率 27
2.2.3 磁滯損失與渦流損 28
2.2.4 集膚效應 30
2.2.5 鄰近效應 33
2.2.6 末端效應與邊界效應 34
2.2.7 感應加熱的線圈設計 36
第 3 章 自動化移動式感應加熱應用製程規劃 38
3.1 研究架構 38
3.2 感應快速加熱滾壓機構設計與設備 41
3.2.1 真空吸附水冷腔體 43
3.2.2 高週波感應線圈 47
3.2.3 滾壓機台架構 48
3.2.4 冷卻系統 55
3.2.5 高週波感應產生器模組 56
3.3 實驗材料與儀器介紹 58
3.3.1 模具與壓印材料 58
3.3.2 雲母板材料應用 60
3.3.3 壓力量測設備 62
3.3.4 熱電耦溫度資料擷取器 63
3.3.5 3D雷射共軛焦顯微鏡 64
3.3.6 自動化儀器設備 65
3.4 自動化感應加熱滾輪熱壓步驟流程 68
第 4 章 自動化製程分析 71
4.1 自動化開關設備介紹 71
4.2 控制開關介紹 73
4.3 Arduino線路連接 74
4.3.1 馬達線路連接 75
4.3.2 電磁開關閥線路連接 76
4.3.3 氣壓與水路電磁閥線路連接 77
4.4 Arduino程式碼 78
第 5 章 模具加熱均勻性分析 80
5.1 溫度量測與模具設置 80
5.1.1 溫度量測設置 80
5.1.2 模具升溫趨勢量測 81
5.2 壓印溫度控制 82
5.2.1 功率與溫度相依性探討 82
5.2.2 調整功率提升移動式加熱之溫度均勻性 84
5.2.3 磁場集中器應用於模具升溫 87
5.2.4 模具溫度均勻性控制 90
5.2.5 實驗壓印溫度設置 92
5.2.6 冷卻水路探討 97
5.3 本章結論 100
第 6 章 移動式感應加熱應用於滾輪壓印 101
6.1 滾壓製程壓力均勻性探討 101
6.2 微米結構壓印探討 105
6.2.1 壓印實驗參數設置 105
6.2.2 V型溝槽壓印 106
6.2.3 微透鏡陣列壓印 114
6.3 本章結論 121
第 7 章 結論與未來展望 122
7.1 結論 122
7.2 未來展望 123
參考文獻 124
附錄A 3D雷射共軛焦顯微鏡規格表 128
附錄B Arduino程式編譯碼 130
[1]“Micro Lens Array | Products | Isuzu Glass.” [Online]. Available: http://www.isuzuglass.com/ch/products/lens-micro.html. [Accessed: 22-Nov-2018].
[2]S.-J. Liu, Y.-C. Huang, S.-Y. Yang, and K.-H. Hsieh, “Rapid fabrication of surface-relief plastic diffusers by ultrasonic embossing,” Opt. Laser Technol., vol. 42, no. 5, pp. 794–798, 2010.
[3]J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng., vol. 87, no. 10, pp. 1951–1954, Oct. 2010.
[4]P. W. Leech, R. A. Lee, and T. J. Davis, “Printing via hot embossing of optically variable images in thermoplastic acrylic lacquer,” Microelectron. Eng., vol. 83, no. 10, pp. 1961–1965, Oct. 2006.
[5]H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators Phys., vol. 83, no. 1, pp. 130–135, May 2000.
[6]Y. He, J.-Z. Fu, and Z.-C. Chen, “Research on optimization of the hot embossing process,” J. Micromechanics Microengineering, vol. 17, no. 12, p. 2420, 2007.
[7]H. Gao, H. Tan, W. Zhang, K. Morton, and S. Y. Chou, “Air Cushion Press for Excellent Uniformity, High Yield, and Fast Nanoimprint Across a 100 mm Field,” Nano Lett., vol. 6, no. 11, pp. 2438–2441, Nov. 2006.
[8]M. T. Gale, “Replication techniques for diffractive optical elements,” Microelectron. Eng., vol. 34, no. 3, pp. 321–339, Dec. 1997.
[9]H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom., vol. 16, no. 6, pp. 3926–3928, Nov. 1998.
[10]P. Xie et al., “Rapid hot embossing of polymer microstructures using carbide-bonded graphene coating on silicon stampers,” Surf. Coat. Technol., vol. 258, no. Supplement C, pp. 174–180, Nov. 2014.
[11]K. Seunarine, N. Gadegaard, M. O. Riehle, and C. D. W. Wilkinson, “Optical heating for short hot embossing cycle times,” Microelectron. Eng., vol. 83, no. 4–9, pp. 859–863, 2006.
[12]Q. Chen, L. Zhang, and G. Chen, “Far infrared-assisted embossing and bonding of poly(methyl methacrylate) microfluidic chips,” RSC Adv., vol. 4, no. 99, pp. 56440–56444, Oct. 2014.
[13]C. Lu, Y.-J. Juang, L. J. Lee, D. Grewell, and A. Benatar, “Analysis of laser/IR-assisted microembossing,” Polym. Eng. Sci., vol. 45, no. 5, pp. 661–668, May 2005.
[14]M. Ehrhardt, P. Lorenz, F. Frost, and K. Zimmer, “Laser Embossing of Micro-and Submicrometer Surface Structures in Copper,” Phys. Procedia, vol. 39, pp. 735–742, 2012.
[15]J.-C. Hung, Y.-P. Tsai, and C. Hung, “Development of a new apparatus for ultrasonic vibration-assisted glass hot embossing process,” Precis. Eng., vol. 37, no. 1, pp. 222–227, 2013.
[16]S.-C. Chen, P. S. Minh, J.-A. Chang, S.-W. Huang, and C.-H. Huang, “Mold temperature control using high-frequency proximity effect induced heating,” Int. Commun. Heat Mass Transf., vol. 39, no. 2, pp. 216–223, 2012.
[17]“Variable mold temperature to improve surface quality of microcellular injection molded parts using induction heating technology - Chen - 2008 - Advances in Polymer Technology - Wiley Online Library.” [Online]. Available: https://onlinelibrary.wiley.com/doi/epdf/10.1002/adv.20133. [Accessed: 20-Dec-2018].
[18]H.-L. Lin, S.-C. Chen, M.-C. Jeng, P. S. Minh, J.-A. Chang, and J.-R. Hwang, “Induction heating with the ring effect for injection molding plates,” Int. Commun. Heat Mass Transf., vol. 39, no. 4, pp. 514–522, 2012.
[19]M.-S. Huang and N.-S. Tai, “Experimental rapid surface heating by induction for micro-injection molding of light-guided plates,” J. Appl. Polym. Sci., vol. 113, no. 2, pp. 1345–1354, Jul. 2009.
[20]S.-K. Hong, Y.-M. Heo, and J. Kang, “Replication of polymeric micro patterns by rapid thermal pressing with induction heating apparatus,” in 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008, 2008, pp. 911–915.
[21]J. Yanagimoto and K. Ikeuchi, “Sheet forming process of carbon fiber reinforced plastics for lightweight parts,” CIRP Ann. - Manuf. Technol., vol. 61, no. 1, pp. 247–250, 2012.
[22]A. Rochman, A. Frick, and P. Martin, “An alternative method for processing high viscosity polymers. I. Development and feasibility study,” Polym. Eng. Sci., vol. 52, no. 10, pp. 2114–2121, Oct. 2012.
[23]T. J. Ahmed, D. Stavrov, H. E. N. Bersee, and A. Beukers, “Induction welding of thermoplastic composites—an overview,” Compos. Part Appl. Sci. Manuf., vol. 37, no. 10, pp. 1638–1651, Oct. 2006.
[24]蔡宗鴻, “感應加熱技術輔助微結構熱壓印成形之研究,” 國立高雄第一科技大學碩士論文, 高雄市, 2013.
[25]R. Bartolini, W. Hannan, D. Karlsons, and M. Lurie, “HOLOGRAPHY Embossed Hologram Motion Pictures for Television Playback,” Appl. Opt., vol. 9, no. 10, pp. 2283–2290, Oct. 1970.
[26]T. Mäkelä, T. Haatainen, P. Majander, J. Ahopelto, and V. Lambertini, “Continuous Double-Sided Roll-to-Roll Imprinting of Polymer Film,” Jpn. J. Appl. Phys., vol. 47, no. 6, pp. 5142–5144, Jun. 2008.
[27]S. H. Ahn and L. J. Guo, “Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting,” ACS Nano, vol. 3, no. 8, pp. 2304–2310, Aug. 2009.
[28]“Roll-to-Roll 連續式微奈米壓印技術:材料世界網,” 材料世界網. [Online]. Available: http://www.materialsnet.com.tw/DocView.aspx?id=8614. [Accessed: 21-May-2018].
[29]林司牧, “必歐-沙伐定律 | 科學Online – 科技部高瞻自然科學教學資源平台.” [Online]. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=48077. [Accessed: 12-Jan-2017].
[30]P. Robert, Electrical and Magnetic Properties of Materials. Artech House Publishers, 1988.
[31]S. L. Semiatin, Elements of Induction Heating: Design, Control, and Applications. ASM International, 1988.
[32]王尊信, “磁滯曲線,” 科學online, 23-Jun-2011. .
[33]蘇卓盛, “應用於感應加熱的負載並聯共振電流型反流器設計與研製,” 中原大學碩士論文, 桃園縣, 2003.
[34]沈文揚, “外周包覆式磁場感應加熱應用於模具快速加熱之研究,” 中原大學碩士論文, 桃園縣, 2010.
[35]Christian Wolff, “Skin-Effect.” [Online]. Available: http://www.radartutorial.eu/03.linetheory/tl07.en.html. [Accessed: 13-Jan-2017].
[36]徐智楓, “合金化爐高週波感應加熱器特性分析與模擬,” 國立高雄應用科技大學碩士論文, 高雄市, 2011.
[37]V. Rudnev, D. Loveless, R. L. Cook, and M. Black, Handbook of Induction Heating. CRC Press, 2002.
[38]G. E. Totten, K. Funatani, and L. Xie, Handbook of Metallurgical Process Design. CRC Press, 2004.
[39]S.-C. Nian, M.-S. Huang, and T.-H. Tsai, “Enhancement of induction heating efficiency on injection mold surface using a novel magnetic shielding method,” Int. Commun. Heat Mass Transf., vol. 50, pp. 52–60, Jan. 2014.
[40]F. W. Curtis, High-Frequency Induction Heating, 2nd edition. McGraw-Hill Book Company, 1950.
[41]L. Jakubovičová, G. Andrej, K. Peter, and S. Milan, “Optimization of the Induction Heating Process in Order to Achieve Uniform Surface Temperature,” Procedia Eng., vol. 136, pp. 125–131, Spring 2016.
[42]施養旻, “高週波感應快速加熱與氣體均勻施壓應用於壓印複製雙面微結構製程開發,” 台灣大學, 2016.
[43]洪瑋晟, “移動式感應加熱於滾輪熱壓大面積微結構之應用,” 台灣大學, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔