跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳泓儒
研究生(外文):Hung-Ju Wu
論文名稱:應用類比霍爾感測器及電流重建改善電動輪椅安全與舒適度之研究
論文名稱(外文):Improvement of Safety and Comfort for a Powered Wheelchair Driven by Rim Motors with Analog Hall Effect Sensor and Current Reconstruction
指導教授:陽毅平陽毅平引用關係
口試委員:黃緒哲郭重顯
口試日期:2019-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:126
中文關鍵詞:電動輪椅直流無刷馬達轉子角度估測類比霍爾感測器磁場導向控制空間向量脈寬調變電流死區電流重建
DOI:10.6342/NTU201901925
相關次數:
  • 被引用被引用:3
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究目的在改善手輪馬達電動輪椅的舒適度以及安全性,首先本文選擇利用線性霍爾感測器進行轉子位置的估測,相較於以往的數位霍爾感測器,線性霍爾感測器的解析度較高,且能夠得到轉子位置的初始值,而要能正確的估測轉子位置,首先必須先經過一段訊號的處理,接下來才能夠進行轉子位置的估測,獲得正確的轉子位置後,即可將其應用至磁場導向控制進而驅動手輪馬達,相較於六步方波,磁場導向控制不但驅動效率更高,且能夠控制在更為低速的範圍,對於使用者啟動的舒適度能夠有更佳的幫助,且由於其是針對每個角度形成垂直的磁場進行驅動,因此馬達在轉動所產生的震動較低,也能夠提供使用者更好的使用體驗。
而實現磁場導向控制需要利用空間向量脈寬調變,並且為了完成閉迴路則必須將電流做取樣,並且輸入控制器,目前最常使用的電流取樣方式為在三相下橋與直流負端間放置取樣電阻,進而取樣三相電流,也因此下橋的導通時間成了很重要的角色,因為若是無法提供足夠的下橋導通時間可能會造成電流錯誤取樣,而這些無法正確取樣電流的區域在空間向量脈寬調變中稱為電流死區,本文針對不同的電流死區利用不同的策略來完成電流重建,避免系統過度補償而產生暴衝的現象,增加了電動輪椅的安全性。
完成以上控制策略後,首先會將速度與電流與前一代的控制系統比較,接下來會比較電流重建前後的電流差異。
The purpose of the thesis is to improve safety and comfort of powered wheelchair driven by rim motors. This research use analog hall effect sensor to estimate rotor position instead of digital hall effect sensor. Because analog hall effect sensor has higher resolution and it can provide initial motor position inform. To obtain more accurate rotor position , hall effect voltage signal processing is necessary before estimating rotor position,. After rotor position estimation, we can use the result to implement field oriented control(FOC). Compared to six step square wave control, field oriented control not only has higher motor efficiency but can let motor operate in lower rotating speed. These advantages can let users of electric wheelchair feel more comfortable when they start to operate the rim motors. In addition, FOC can provide users with a better, because it use different vertical magnetic field for each angle.
To achieve the field oriented control, it is necessary to use the space vector pulse width modulation, and in order to complete the closed loop, the current must be sampled. The most commonly used current sampling method is to place a shunt resistor between the lower bridge switch and dc-link negative line , and then sample the three-phase current. Therefore, the lower bridge switch conduction time becomes an important role, because if the lower bridge conduction time cannot be provided, the current may be sampled incorrectly. These areas where the current cannot be correctly sampled are called current dead zone. In this paper, different strategies are used to complete the current reconstruction for different current dead zones, avoiding over-compensation and sudden unintended acceleration, and increasing the safety of electric wheelchairs.
After completing the above control strategy, the speed and current will be compared with the previous control system, and then the current difference before and after current reconstruction will be compared.
論文審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
目錄 VI
圖目錄 IX
表目錄 XIII
符號表 XIV
第一章 序論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 電動輪椅動力系統 2
1.2.2 直流無刷馬達驅動控制 3
1.2.3 霍爾訊號角度估測 4
1.2.4 電流重建 6
1.2.5 本文貢獻 7
1.3 論文架構與章節摘要 7
第二章 手輪馬達電動輪椅整車系統架構 9
2.1 整車硬體控制系統 9
2.2 整車硬體架構 10
2.2.1 上控制器模組[53] 10
2.2.2 下控制器模組 [54] 15
2.2.3 馬達驅動器 [54] 20
2.2.4 霍爾感測器安裝位置 26
第三章 直流無刷馬達驅動理論 29
3.1 無刷直流馬達 29
3.1.1 手輪馬達電氣方程式 29
3.1.2 手輪馬達機械動態方程式 34
3.1.3 手輪馬達簡化模型 36
3.2 直流無刷馬達運作原理 38
3.3 霍爾感測器與無刷直流馬達反動勢 40
3.3.1 霍爾感測器運作原理 41
3.3.2 無刷直流馬達反電動勢 42
3.4 SVPWM實現磁場導向控制 46
3.4.1 磁場導向控制 48
3.4.2 空間向量脈寬調變 54
第四章 控制系統原理與實現 63
4.1 CCS編輯器介紹 63
4.1.1 CCS編輯器環境介紹 63
4.1.2 F28069寄存器功能介紹 66
4.2 類比霍爾訊號角度估測 71
4.2.1 線性霍爾訊號前處理 71
4.2.2 轉子位置估測 73
4.3 SVPWM有感測器驅動控制 76
4.3.1 SVPWM電流閉迴路控制 76
4.3.2 SVPWM速度閉迴路控制 81
4.4 電流死區及電流重建 86
4.4.1 電流死區 86
4.4.2 電流重建 92
第五章 實驗結果 97
5.1 實驗設備介紹 97
5.2 線性霍爾訊號應用於磁場導向控制 101
5.2.1 線性霍爾訊號處理 101
5.2.2 線性霍爾訊號估測轉子位置 102
5.2.3 三相電流 103
5.2.4 電流響應與速度響應 104
5.2.5 空載速度與前一代控制器比較 106
5.2.6 空載電流與前一代控制器比較 108
5.3 電流重建 109
5.3.1 電流重建前後之相電流比較 109
5.3.2 電流重建前後趨勢比較 110
5.4 整車實驗 112
5.4.1 負載平地測試與前一代系統比較 112
5.4.2 負載上坡起步測試與前一代系統比較 114
5.5 總結 116
第六章結論與未來展望 117
6.1 結論 117
6.2 未來展望 117
參考文獻 119
[1]Gunachandra, "Wall following control for the application of a brain-controlled Wheelchair", Intelligent Autonomous Agents, Networks and Systems , 2014
[2]N. Shinde and K. George, "Brain-controlled driving aid for electric wheelchairs," in 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2016, pp. 115-118.
[3]M. F. Ruzaij, S. Neubert, N. Stoll, and K. Thurow, "A speed compensation algorithm for a head tilts controller used for wheelchairs and rehabilitation applications," in 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 2017, pp. 000497-000502.
[4]K. Sasaki and K. Suzuki, "Active Rotary-Legs Mechanism for Stair-Climbing Mobility Vehicle," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2237-2244, 2018.
[5]I. P. Ktistakis and N. G. Bourbakis, "Assistive Intelligent Robotic Wheelchairs," IEEE Potentials, vol. 36, no. 1, pp. 10-13, 2017.
[6]R. Zhang et al., "Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation," IEEE Trans Neural Syst Rehabil Eng, vol. 24, no. 1, pp. 128-39, Jan 2016.
[7]H. Xiao, Z. Li, C. Yang, W. Yuan, and L. Wang, "RGB-D sensor-based visual target detection and tracking for an intelligent wheelchair robot in indoors environments," International Journal of Control, Automation and Systems, vol. 13, no. 3, pp. 521-529, 2015.
[8]S. He et al., "A P300-Based Threshold-Free Brain Switch and Its Application in Wheelchair Control," IEEE Trans Neural Syst Rehabil Eng, vol. 25, no. 6, pp. 715-725, Jun 2017.
[9]H. Wang and A. Bezerianos, "Brain-controlled wheelchair controlled by sustained and brief motor imagery BCIs," Electronics Letters, vol. 53, no. 17, pp. 1178-1180, 2017.
[10]N. Wanluk, S. Visitsattapongse, A. Juhong, and C. Pintavirooj, "Smart wheelchair based on eye tracking," in 2016 9th Biomedical Engineering International Conference (BMEiCON), 2016, pp. 1-4.
[11]H. S. Grewal, N. T. Jayaprakash, A. Matthews, C. Shrivastav, and K. George, "Autonomous wheelchair navigation in unmapped indoor environments," in 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2018, pp. 1-6.
[12]T. Chaloem, S. Yokota, H. Hashimoto, and D. Chugo, "Oscillation suppression control for electric wheelchair using human body motion interface," in 2018 IEEE International Conference on Industrial Technology (ICIT), 2018, pp. 1991-1996.
[13]R. Chauhan, Y. Jain, H. Agarwal, and A. Patil, "Study of implementation of Voice Controlled Wheelchair," in 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS), 2016, vol. 01, pp. 1-4.
[14]D. Kobayashi, T. Watanabe, N. Tyler, and T. Suzuki, "A validation test of using shoulder joint moment in evaluation of load in wheelchair propulsion," in 2017 IEEE Life Sciences Conference (LSC), 2017, pp. 242-245.
[15]Z. Wang, J. Chen, M. Cheng, and K. T. Chau, "Field-Oriented Control and Direct Torque Control for Paralleled VSIs Fed PMSM Drives With Variable Switching Frequencies," IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2417-2428, 2016.
[16]L. Yu, C. Wang, H. Shi, R. Xin, and L. Wang, "Simulation of PMSM field-oriented control based on SVPWM," in 2017 29th Chinese Control And Decision Conference (CCDC), 2017, pp. 7407-7411.
[17]S. Hajiaghasi, A. Salemnia, and F. Motabarian, "Four switches direct power control of BLDC motor with trapezoidal back-EMF," in 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), 2017, pp. 513-518.
[18]H. K. Samitha Ransara and U. K. Madawala, "A Torque Ripple Compensation Technique for a Low-Cost Brushless DC Motor Drive," IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6171-6182, 2015.
[19]I. Neborak and M. Kuchar, "Load torque impact on DC motor current control accuracy," in 2016 ELEKTRO, 2016, pp. 341-345.
[20]F. Niu, B. Wang, A. S. Babel, K. Li, and E. G. Strangas, "Comparative Evaluation of Direct Torque Control Strategies for Permanent Magnet Synchronous Machines," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1408-1424, 2016.
[21]N. Matsui, "Sensorless PM brushless DC motor drives," IEEE Transactions on Industrial Electronics, vol. 43, no. 2, pp. 300-308, 1996.
[22]X. Song, J. Fang, B. Han, and S. Zheng, "Adaptive Compensation Method for High-Speed Surface PMSM Sensorless Drives of EMF-Based Position Estimation Error," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1438-1449, 2016.
[23]G. Zhang, G. Wang, D. Xu, and N. Zhao, "ADALINE-Network-Based PLL for Position Sensorless Interior Permanent Magnet Synchronous Motor Drives," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1450-1460, 2016.
[24]S. Lin and W. Zhang, "An adaptive sliding-mode observer with a tangent function-based PLL structure for position sensorless PMSM drives," International Journal of Electrical Power & Energy Systems, vol. 88, pp. 63-74, 2017.
[25]L. Xiaoquan, L. Heyun, and H. Junlin, "Load disturbance observer-based control method for sensorless PMSM drive," IET Electric Power Applications, vol. 10, no. 8, pp. 735-743, 2016.
[26]S. Medjmadj, D. Diallo, M. Mostefai, C. Delpha, and A. Arias, "PMSM Drive Position Estimation: Contribution to the High-Frequency Injection Voltage Selection Issue," IEEE Transactions on Energy Conversion, vol. 30, no. 1, pp. 349-358, 2015.
[27]Y. Zhao, Z. Zhang, W. Qiao, and L. Wu, "An Extended Flux Model-Based Rotor Position Estimator for Sensorless Control of Salient-Pole Permanent-Magnet Synchronous Machines," IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4412-4422, 2015.
[28]J. Choi, K. Nam, A. A. Bobtsov, A. Pyrkin, and R. Ortega, "Robust Adaptive Sensorless Control for Permanent-Magnet Synchronous Motors," IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3989-3997, 2017.
[29]P. Tety, A. Konaté, O. Asseu, E. Soro, and P. Yoboué, "An Extended Sliding Mode Observer for Speed, Position and Torque Sensorless Control for PMSM Drive Based Stator Resistance Estimator," Intelligent Control and Automation, vol. 07, no. 01, pp. 1-8, 2016.
[30]S. Diao, D. Diallo, Z. Makni, C. Marchand, and J.-F. Bisson, "A Differential Algebraic Estimator for Sensorless Permanent-Magnet Synchronous Machine Drive," IEEE Transactions on Energy Conversion, vol. 30, no. 1, pp. 82-89, 2015.
[31]J. Kim, K. Cho, and S. Choi, "Lumped disturbance compensation using extended Kalman filter for permanent magnet linear motor system," International Journal of Control, Automation and Systems, vol. 14, no. 5, pp. 1244-1253, 2016.
[32]K. Cho, J. Kim, S. B. Choi, and S. Oh, "A High-Precision Motion Control Based on a Periodic Adaptive Disturbance Observer in a PMLSM," IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2158-2171, 2015.
[33]L. Xiao, Y. Yunyue, and Z. Zhuo, "Study of the Linear Hall-Effect Sensors Mounting Position for PMLSM," in 2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, pp. 1175-1178.
[34]G. Scelba, G. De Donato, G. Scarcella, F. Giulii Capponi, and F. Bonaccorso, "Fault-Tolerant Rotor Position and Velocity Estimation Using Binary Hall-Effect Sensors for Low-Cost Vector Control Drives," IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3403-3413, 2014.
[35]Y. Yang and Y. Ting, "Improved Angular Displacement Estimation Based on Hall-Effect Sensors for Driving a Brushless Permanent-Magnet Motor," IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 504-511, 2014.
[36]J. Kim, S. Choi, K. Cho, and K. Nam, "Position Estimation Using Linear Hall Sensors for Permanent Magnet Linear Motor Systems," IEEE Transactions on Industrial Electronics, vol. 63, no. 12, pp. 7644-7652, 2016.
[37]X. Song, F. Jiancheng, and H. Bangcheng, "High-precise Rotor Position Detection for High-speed Surface PMSM Drive based on Linear Hall-effect Sensors," IEEE Transactions on Power Electronics, pp. 1-1, 2015.
[38]D. Reigosa, D. Fernandez, C. Gonzalez, S. B. Lee, and F. Briz, "Permanent Magnet Synchronous Machine Drive Control Using Analog Hall-Effect Sensors," IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2358-2369, 2018.
[39]C. M. Wolf, M. W. Degner, and F. Briz, "Analysis of current sampling errors in PWM, VSI drives," in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 1770-1777.
[40]S. M. Shin, R. K. Park, B. K. Lee, “Compensation PWM technique for extended output voltage range in three-phase VSI using three shunt resistors”. Korean Institute of Electrical Engineers. pp. 1324-1331, 2014
[41]J. Lu, X. Zhang, Y. Hu, J. Liu, C. Gan, and Z. Wang, "Independent Phase Current Reconstruction Strategy for IPMSM Sensorless Control Without Using Null Switching States," IEEE Transactions on Industrial Electronics, vol. 65, no. 6, pp. 4492-4502, 2018.
[42]H. Yan, Y. Xu, J. Zou, Y. Fang, and F. Cai, "A Novel Open-Circuit Fault Diagnosis Method for Voltage Source Inverters With a Single Current Sensor," IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8775-8786, 2018.
[43]S. Hojoon and H. Jung-Ik, "Phase Current Reconstructions from DC-Link Currents in Three-Phase Three-Level PWM Inverters," IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 582-593, 2014.
[44]Y. Xu, H. Yan, J. Zou, B. Wang, and Y. Li, "Zero Voltage Vector Sampling Method for PMSM Three-Phase Current Reconstruction Using Single Current Sensor," IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3797-3807, 2017.
[45]H. Yan, Y. Xu, and J. Zou, "A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive," Energies, vol. 9, no. 10, 2016.
[46]C. Zhang, H. Liao, X. Li, J. Sun, and J. He, "Fault Reconstruction Based on Sliding Mode Observer for Current Sensors of PMSM," Journal of Sensors, vol. 2016, pp. 1-9, 2016.
[47]G. Huang, Y. P. Luo, C. F. Zhang, J. He, and Y. S. Huang, "Current Sensor Fault Reconstruction for PMSM Drives," Sensors (Basel), vol. 16, no. 2, p. 178, Jan 30 2016.
[48]K. Zhao, P. Li, C. Zhang, X. Li, J. He, and Y. Lin, "Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System," Sensors (Basel), vol. 17, no. 12, Dec 6 2017.
[49]B. Hafez, A. S. Abdel-Khalik, A. M. Massoud, S. Ahmed, and R. D. Lorenz, "Single-Sensor-Based Three-Phase Permanent-Magnet Synchronous Motor Drive System With Luenberger Observers for Motor Line Current Reconstruction," IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2602-2613, 2014.
[50]Z. Zhang, D. Leggate, and T. Matsuo, "Industrial Inverter Current Sensing With Three Shunt Resistors: Limitations and Solutions," IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4577-4586, 2017.
[51]L. Haifeng, C. Xiaomeng, Q. Wenlong, S. Shuang, L. Yituo, and W. Zhengyu, "A Three-Phase Current Reconstruction Technique Using Single DC Current Sensor Based on TSPWM," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1542-1550, 2014.
[52]J. Lu, Y. Hu, X. Zhang, Z. Wang, J. Liu, and C. Gan, "High-Frequency Voltage Injection Sensorless Control Technique for IPMSMs Fed by a Three-Phase Four-Switch Inverter With a Single Current Sensor," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 758-768, 2018.
[53]葉治緯, 雙動力輪智慧電動輪椅之系統整合與控制, 碩士論文, 國立台灣大學, 台北, 2018.
[54]莊詠諭,手輪馬達電動輪椅馬達驅動控制器研發與驗證, 碩士論文, 國立台灣大學, 台北, 2018.
[55] ZENER 特性圖,[Online].Available: https://www.researchgate.net/figure/Zener-diode-work-region_fig14_277993172.
[56]林怡劭, 手輪馬達電動輪椅力矩控制暨參數識別, 碩士論文, 國立台灣大學, 台北, 2017.
[57]吳建維, 手輪馬達式電動輪椅之煞車策略與上坡起步, 碩士論文, 國立台灣大學, 台北, 2014.
[58]右手定則,維基百科, [Online].Available: https://zh.wikipedia.org/wiki/%E5%8F%B3%E6%89%8B%E5%AE%9A%E5%89%87
[59]江維倫,創新動力輪內環形馬達與安全煞車之整合設計, 碩士論文, 國立台灣大學, 台北, 2014
[60] TMS320F2806x Piccolo™ Microcontrollers datasheet (Rev. G), [Online]. Available: http://www.ti.com/lit/ds/symlink/tms320f28067.pdf
[61] TMS320x2806x Piccolo Technical Reference Guide (Rev. G) , [Online]. Available: http://www.ti.com/lit/ug/spruh18g/spruh18g.pdf
[62]施華語,手輪馬達電動輪椅之霍爾感測器失效控制策略, 碩士論文, 國立台灣大學, 台北, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊