[1]Hill, K. O., Fujii, Y., Johnson, D. C., & Kawasaki, B. S. (1978). Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied Physics Letters, vol. 32, 647-649.
[2]Meltz, G., Morey, W., & Glenn, W. H. (1989). Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, vol. 14, 823-825.
[3]Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., & Albert, J. (1993). Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters, vol. 62, 1035-1037.
[4]Anderson, D. Z., Mizrahi, V., Erdogan, T., & White, A. E. (1993). Production of in-fiber gratings using a diffractive optical element. Electronics Letters, vol. 29, 566-568.
[5]Bennion, I., Williams, J. A. R., Zhang L., Doran, S. K., & Doran, N. J. (1996). Tutorial review, UV-written in-fiber Bragg gratings. Optics Quantum Electronics, vol. 28, 93-135.
[6]Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, vol. 15, 1263-1276.
[7]Kashyap, R. (1999). Fiber Bragg Gratings. Academic press.
[8]Erdogan, T. (1997). Fiber grating spectra. Journal of Lightwave Technology, vol. 15, 1277-1294.
[9]Nye, J. F. (1957).Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford university press.
[10]Bertholds, A., & Dandliker, R. (1988). Determination of the individual strain-optic coefficients in single-mode optical fibres. Journal of Lightwave Technology, vol. 6, 17-20.
[11]Takahashi, S., & Shibata, S. (1979). Thermal variation of attenuation for optical fibers. Journal of Non-Crystalline Solids, vol. 30, 359-370.
[12]Tao, X., Tang, L., Du, W. C., & Choy, C. L. (2000). Internal strain measurement by fiber Bragg grating sensors in textile composites. Composites Science and Technology, vol. 60, 657-669.
[13]Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter. Optics Letters, vol. 18, 1370-1372.
[14]Sun, Q., Liu, D., Xia, L., Wang, J., Liu, H., & Shum, P. (2008). Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating. Photonics Technology Letters, IEEE, vol. 20, 933-935.
[15]Murukeshan, V. M., Chan, P. Y., Ong, L. S., & Seah, L. K. (2000). Cure monitoring of smart composites using fiber Bragg grating based embedded sensors. Sensors and Actuators A: Physical, vol. 79, 153-161.
[16]Zhao, X., Song, G., Fernandez, M., & Ou, J. (2009). One kind of fiber Bragg grating displacement sensor using micro-elastic spring. Second International Conference on Smart Materials and Nanotechnology in Engineering, 74932X-74932X-6.
[17]Biswas, P., Bandyopadhyay, S., Kesavan, K., Parivallal, S., Sundaram, B. A., Ravisankar, K., & Dasgupta, K. (2010). Investigation on packages of fiber Bragg grating for use as embeddable strain sensor in concrete structure. Sensors and Actuators A: Physical, vol. 157, 77-83.
[18]Ball, G. A., & Morey, W. W. (1992). Continuously tunable single-mode erbium fiber laser. Optics Letters, vol. 17, 420-422.
[19]Ball, G., & Morey, W. W. (1994). Compression-tuned single-frequency Bragg grating fiber laser. Optics Letters, vol. 19, 1979-1981.
[20]YoonKim, S., BaeLee, S., WonKwon, S., & SamChoi, S. (1998). Channel-switching active add/drop multiplexer with tunable gratings. Electronics Letters, vol. 34, 104-105.
[21]Mavoori, H., Jin, S., Espindola, R. P., & Strasser, T. A. (1999). Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating based reconfigurable add drop devices. Optics Letters, vol. 24, 714-716.
[22]Inui, T., Komukai, T., & Nakazawa, M. (2001). Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers. Optics Communications, vol. 190, 1-4.
[23]Yoffe, G. W., Krug, P. A, Ouellette, F., & Thorncraft, D. A. (1995). Passive temperature-compensation package for optical fiber gratings. Applied Optics, vol. 34, 6859-6861.
[24]Melle, S. M., & Liu, K. (1992). A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photonics Technology Letters, vol. 4, 516-518.
[25]Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Two-channel fiber Bragg-grating strain sensor with high-resolution interferometric wavelength-shift detection. Fibers'', vol. 92, 48-55.
[26]蔣彥儒,王立康, "溫度無感之布拉格式光纖光柵應變感測系統之研究," 博士論文, 電機工程學系, 國立清華大學, 2003.[27]江家慶,單秋成, "能量調變型光纖光柵感測器," 第二十屆機械工程研討會, 2003.
[28]葉耀文,馬劍清, "短週期光纖光柵在動態系統的量測與應用," 碩士論文, 機械工程研究所, 台灣大學, 2004[29]許碩修,馬劍清, "能量調變型光纖光柵感測器在動態系統的量測與應用," 碩士論文, 機械工程學研究所, 臺灣大學, 2005.[30]莊國志,馬劍清, "以長週期光纖光柵作為能量調變之光纖光柵感測系統動態實驗," 中華民國力學學會第二十九屆全國力學會議, 2005.
[31]林伯睿,馬劍清, "高靈敏度光纖濾波器與高感度光纖光柵之開發及應用於量測穩態和暫態波傳研究," 碩士論文, 機械工程學研究所, 臺灣大學, 2006.
[32]粱正言,馬劍清, "高頻面內光纖光柵感測器及其動態量測系統之開發與研究," 碩士論文, 機械工程學研究所, 臺灣大學, 2007.
[33]汪政緯,馬劍清, "應用布拉格光纖光柵感測器於結構件承受撞擊之暫態應變量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2008.[34]莊國志,馬劍清, "多維高解析度布拉格光纖光柵動態位移及應變量測系統之研發並應用於暫態波傳之量測," 博士論文, 機械工程學研究所, 臺灣大學, 2008.[35]王兆祥,馬劍清, "布拉格光纖光柵感測器之理論分析以及應用動態量測與監測之探討," 碩士論文, 機械工程學研究所, 臺灣大學, 2010.[36]王俊耀,馬劍清, "布拉格光纖光柵感測器應用於三維結構物邊點之暫態應變量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2012.[37]王華均,馬劍清, "智慧懸臂樑結構的主動抑振研究以及布拉格光纖光柵多點量測的技術開發," 碩士論文, 機械工程學研究所, 臺灣大學, 2013.[38]林建鐘,馬劍清, "探討質量效應對於樑結構頻率域之影響以及移動質量的動態特性分析," 碩士論文, 機械工程學研究所, 臺灣大學, 2014.
[39]柯秉良,馬劍清, "布拉格光纖光柵應用於壓力感測器設計與製作以及動態應變量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2015.[40]黃康哲,馬劍清, "聚偏二氟乙烯薄膜與布拉格光纖光柵感測器之動態量測技術研發與應用," 博士論文, 機械工程學研究所, 臺灣大學, 2015.[41]李冠德,馬劍清, "以布拉格光纖光柵器量測與分析固液耦合結構物的動態特性及暫態波傳問題," 碩士論文, 機械工程學研究所, 臺灣大學, 2016.[42]許詠荏,馬劍清, "布拉格光纖光柵感測器於高速內藏式主軸及超精密平面磨床動態特性、溫升及變形之精密量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2016.[43]龔瑞清,馬劍清, "開發布拉格光纖光柵感測器於多點與即時量測系統並應用在高速內藏式主軸與銑削工件之溫升、變形及轉速之精密量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2017.[44]Siebert, T., Schubach, H. R., & Splitthof, K. (2010). Recent developments and applications for optical full field strain measurement using ESPI and DIC. Fourth International Seminar on Modern Cutting and Measuring Engineering, 79972B-79972B.
[45]Bay, B. K. (1995). Texture correlation: a method for the measurement of detailed strain distributions within trabecular bone. Journal of Orthopaedic Research, vol. 13, 258-267.
[46]Zhang, D., Zhang, X., & Cheng, G. (1999). Compression strain measurement by digital speckle correlation. Experimental Mechanics, vol. 39, 62-65.
[47]Chen, D. J., Chiang, F. P., Tan, Y. S., & Don, H. S. (1993). Digital speckle-displacement measurement using a complex spectrum method. Applied Optics, vol. 32, 1839-1849.
[48]Gaudette, G. R., Todaro, J., Krukenkamp, I. B., & Chiang, F. P. (2001). Computer aided speckle interferometry: a technique for measuring deformation of the surface of the heart. Annals of Biomedical Engineering, vol. 29, 775-780.
[49]Sjödahl, M., & Benckert, L. R. (1993). Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy. Applied Optics, vol. 32, 2278-2284.
[50]Sjödahl, M. (1997). Accuracy in electronic speckle photography. Applied Optics, vol. 36, 2875-2885.
[51]Pan, B., Xie, H., Yang, L., & Wang, Z. (2009). Accurate measurement of satellite antenna surface using 3D digital image correlation technique. Strain, vol. 45, 194-200.
[52]Bruck, H. A., McNeill, S. R., Sutton, M. A., & Peters Iii, W. H. (1989). Digital image correlation using Newton-Raphson method of partial differential correction. Experimental Mechanics, vol. 29, 261-267.
[53]張敬源,馬劍清, "應用影像處理及叢集電腦於電子斑點干涉術及數位影像相關法全場分析技術之開發," 博士論文, 機械工程學研究所, 臺灣大學, 2012.[54]周宛萱,馬劍清, "建構高精度數位影像相關法並應用於土木結構動態系統及奈米材料微系統的變形量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2014.[55]簡宸煜,馬劍清, "應用數位影像相關法於土木結構及碳纖維性質與電池表面變化之量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2015.[56]彭柏勳,馬劍清, "應用數位影像相關法於量測機械系統與土木結構之變形及動態特性量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2016.[57]陳亮至,馬劍清, "建構立體數位影像相關法之基礎理論並應用於結構靜態與動態三維變形之精密量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2016.[58]黃右年,馬劍清, "建立即時立體數位影像相關法於三維工程問題的動態量測," 碩士論文, 機械工程學研究所, 臺灣大學, 2018.[59]王盛儀,馬劍清, "數位影像相關法於二維軌跡及變形量測和應用於建構立體形貌," 碩士論文, 機械工程學研究所, 臺灣大學, 2018.[60]Y. Ephraim, D. Malah (1984). Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-32, 1109-1121.