(54.236.58.220) 您好!臺灣時間:2021/03/08 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳泓霖
研究生(外文):Hung-Lin Wu
論文名稱:主動式光學相位補償裝置於體積全像曝光技術之設計開發
論文名稱(外文):Design and Development of an Adaptive Optical Phase Compensation Device for Volume Hologram Exposure Technology
指導教授:黃光裕駱遠
指導教授(外文):Kuang-Yuh HuangYuan Luo
口試委員:廖先順
口試委員(外文):Hsien-Shun Liao
口試日期:2019-06-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:64
中文關鍵詞:體積全像曝光系統主動式光學相位補償裝置光波前感測器數位微反射晶片數位光柵二維振鏡
DOI:10.6342/NTU201901747
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
體積全像技術為全像投影的一種,擁有角度選擇性高的特性。常被當作光學濾波器使用,可以有效的過濾光源,選擇特定的角度或波長。近年來在體積全像片的不同角度錄製不同的光形,製成多焦段透鏡,用於醫療顯影掃描用途,可以有效的提高掃描速度。然而在製作多焦段透鏡時,常因雷射相位不穩定,造成體積全像片上的繞射光柵受到影響,降低繞射效率。本論文為了提高體積求像投影之繞射效率,嘗試引入主動式光學相位補償裝置至體積全像曝光系統中,已穩定雷射之相位變化。主動式光學相位補償裝置為一光學回饋系統,較多應用在太空望遠鏡已達到修正影像之效果。本論文在相位補償上使用數位微反射晶片以及機械式兩種方式,數位微反射晶片產生數位全像,並藉由調整數位全像光柵來修正繞射光之角度,具備高重現性與精密性,與實際角度變化量的相關係數為0.9091,最小角度改變量可達到3.49 urad。數位微反射晶片主動式光學相位補償裝置整體補償頻率可達11Hz,且可有效降低水平傾角的震盪。然而,數位全像會產生多階繞射光,在體積全像片曝光過程會有光損害,因此本論文設計研發二維振鏡用於機械式主動式光學相位補償裝置,用於回饋雷射光束傾角,以提高雷射穩定度,使用伺服馬達驅動精密螺桿,推動反射鏡旋轉,並利用拉伸彈簧提供振鏡回復力,同時降低精密螺桿餘隙,以達到更高的精度。經過縮小機構,最小角度改變量為0.087 urad,在五次雷射光束相位補償試驗中,光軸傾角的峰值誤差經過相位補償後均有明顯下降。而為了減少體積全像多層曝光之工程,本論文架設一自動化系統達到自動曝光之系統。
Volume hologram technique is one of a holographic projection with high angle sensitivity. It is often used as an optical filter to pure the light source and select a specific angle or wavelength. Recently, volume hologram technique often uses to make into multi-focal lens, by recording different light shapes at different angles on Volume hologram sheet, which apply in medical development scanning, which can effectively improve the scanning speed. However, when recording diffraction gratings, the laser phase is often unstable, and it will affect diffraction grating on Volume hologram sheet, reducing the diffraction efficiency. In order to improve the diffraction efficiency, this paper attempts to introduce an active optical phase compensation device into the volume holographic exposure system, which has stabilized the phase change of the laser. The adaptive optical phase compensation device is an optical feedback system, and most of the applications are in the space telescope to achieved the effect of correcting images. In this paper, digital micro-mirror display (DMD) and mechanical two methods are used for phase compensation. DMD produces digital holographic image, and the angle of the diffracted light is corrected by adjusting the digital holographic grating, which has high reproducibility and precision and high correlation coefficience up to 0.9091. The resolution of changing angle can reach 3.49 urad. The DMD adaptive optical phase compensation device can compensate the frequency up to 11 Hz and can effectively reduce the oscillation of the horizontal tilt angle. However, the digital hologram will produce multi-order diffracted light, which will damage the volume hologram gratings during exposure process. Therefore, this paper designs and develops a two-dimensional galvo-mirror for mechanical adaptive optical phase compensation device for feedback laser beam tilt angle to improve laser stability. The servo motor is used to drive the precision screw to push the mirror to rotate, and the tension spring is used to provide the galvo-mirror restoring force and reduce the precision screw clearance to achieve higher precision. After reducing structure, the resolution can reach 0.087 urad. In the five-time laser beam phase compensation test, the peak error of the optical axis tilt angle is significantly reduced after phase compensation. In order to reduce the volume hologram gratings exposure process, this paper sets up an automated system to achieve automatic exposure system.
目錄
口試委員會審定書 I
致謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XI
符號表 XII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 體積全像技術 2
1.2.2 主動式光學補償系統 (Adaptive optic system) 3
1.3 研究目標 7
1.4 內容簡介 8
第二章 體積全像曝光技術與系統 9
2.1 體積全像片曝光原理與製程 9
2.2 曝光系統架構組成 11
2.3 曝光理論 12
2.4 體積全像之繞射效率 18
第三章 主動式光學相位補償裝置 20
3.1 主動式光學補償原理與架構 20
3.2 相偏差感測單元之原理與功能 21
3.3 補償致動單元開發 25
3.4 自動化系統 27
3.5 重建系統 30
第四章 數位全像於主動式光學相位補償裝置之模擬與測試 31
4.1 數位全像原理 31
4.2 數位全像模擬分析 33
4.3 數位全像第一階繞射光斑之量測和影響因素探討 36
4.4 數位全像於主動式光學相位補償裝置架構與控制方式 43
4.5 補償性能測試 44
第五章 機械式主動式光學相位補償系統之設計開發與測試 46
5.1 實體化設計 46
5.2 機械式主動式光學相位補償裝置測試架構與結果 53
第六章 結論與未來展望 56
參考文獻 58
附錄A 伺服馬達控制器規格 60
附錄B光波前感測器規格 62
附錄C雷射規格 63
[1]Wang, P.H., Singh, V.R., Wong, J.M., Sung, K.B., and Luo, Y., “Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings”, OSA, Vol. 42, Issue 2, 2017, pp.346-349
[2] Zhai, X., Lin, W.T., Chen, H.H., Wang, P.H., Yeh, L.H., Tsai, J.C., Singh, V.R., and Luo, Y., “In-line digital holographic imaging in volume holographic microscopy”, OSA, Vol. 40, Issue 23, 2015, pp.5542-5545
[3]Gao, H., Watson, J.M., Stuart, J.S., and Barbastathis, G., “Design of volume hologram filters for suppression of daytime sky brightness in artificial satellite detection.”, OSA, 2013, doi: 10.1364/OE.21.006448
[4]Babcock, H.W. “The possibility of compensating astronomical seeing”  Astronomical Society of the pacific, Vol.65, 1953, pp.229-236.
[5]Thompson, L.A., “Adaptive Optics in Astronomy”, Physics Today, 1994, doi: 10.1063/1.881406
[6] Büttner, L., Leithold, C., and Czarske, J., “Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics”, Optics Express, Vol. 21, No. 25, 2013, pp.30653-30663
[7]Hsu, K.Y., Lin, S.H., Whang, W.T., and Chen, W.Z., “Holographic data storage using photopolymer”, SPIE, Vol. 3801, 1999, pp.66-74
[8] Kogelnik, H., “Coupled wave theory for thick hologram gratings”, The Bell System Technical Journal, 1969, doi: 10.1002/j.1538-7305.1969.tb01198.x
[9]Reflection Geometry and Birkbeck College, University of London, http://pd.chem.ucl.ac.uk/pdnn/inst1/optics1.htm
[10]Luo, Y., Gelsinger, P.J., Barton, J.K., Barbastathis, G., and Kostuk, R.K., ‘‘Optimization of multiplexed holographic gratings in PQ-PMMA for spectral–spatial imaging filters’’, OPTICS LETTERS, Vol. 33, No. 6, 2008, pp.566-568
[11]Zernike polynomials 維基百科網站https://en.wikipedia.org/wiki/Zernike_polynomials
[12]Douglass, M.R., “DMD reliability: a MEMS success story”, SPIE, Vol. 4980, 2003, pp.1-11
[13]PGL Technical Note – The Grating Equation, Plymouth Grating Laboratory普利茅斯光柵實驗室https://www.plymouthgrating.com/guidance/technical-notes/fundamentals/the-grating-equation/?fbclid=IwAR1_eE9JZwAkw0YFE-0c46CoeLA4Tu_-OqOH_IEtk2ssy7y8PodGQnetItA
[14]Grating Calculator, Plymouth Grating Laboratory普利茅斯光柵實驗室 https://www.plymouthgrating.com/guidance/grating-calculator/?fbclid=IwAR1HwJiqYDeRoYb3Uf2BznP7i-cIjRZKrJNlYHQyHjlpm401BZX2YvKnTPY
[15]朱淑君, 富氏光學/Fourier optics, 國立成功大學物理研究所
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔