跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何廣雷
研究生(外文):Kuang-Lei Ho
論文名稱:血管支架疲勞壽命提升之設計概念與實驗驗證
論文名稱(外文):Design and Experiments of a New Vascular Stent with Enhanced Pulsatile Fatigue Life
指導教授:蕭浩明
口試委員:劉建豪莊嘉揚
口試日期:2019-01-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:自動擴張式支架心血管疾病有限元素法分析疲勞壽命Goodman疲勞分析血管支架疲勞測試機徑向力測試機
DOI:10.6342/NTU201901890
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血管支架植入技術自從1990年發明以來,一直受到醫學界的廣泛關注。然而,血管支架在植入血管以後,容易因為血壓引起的脈動以及日常身體的活動而產生徑向週期性的變化,尤其是在身體周邊的血管中更為明顯,這些週期性、反覆不斷的運動,容易造成血管支架疲勞破壞,甚至造成支架結構的斷裂。因此,近年來這些因疲勞產生破壞的支架儼然成為一項在醫學界中重要的課題。在本篇研究中提出了一項有趣的支架設計概念,運用調整支架之幾何形狀,漸進地減縮支架支撐結構的寬度,來分散原本在支架彎曲結構上的應力集中,使其延伸到原本毫無承受應力的支撐結構上,進而增加支架的疲勞壽命。為分析此支架設計對於疲勞安全係數的影響以及其他重要的機械性質,運用有限元素法搭配Goodman疲勞壽命分析對支架進行量化的分析與比較,模擬結果顯示以此創新設計的幾何形狀進行優化之血管支架,在疲勞安全係數方面大幅提升至原本的4倍之多。此概念性支架雛型品,乃是藉由一連串製程而完成的,運用脈衝式光纖雷射對鎳鈦圓管進行切削加工,其次使用多次熱處理擴張使其定型並消除內部應力,最後進行電化學拋光以增加其表面精度。本研究也藉由現有疲勞測試機的概念,製造專為測試血管支架之疲勞性質所設計的旋轉疲勞測試機,並對支架雛型品進行實驗以驗證模擬的結果。實驗結果指出經過此創新設計的支架能有效地提升其疲勞壽命,完美符合模擬結果所顯示的趨勢,不管是在常溫下抑或是體溫下進行實驗,經過此設計的支架其疲勞斷裂圈數皆相較於標準支架提升了6~7倍之多,此外,在徑向力測試的結果也指出,其徑向力之數值相對於標準的支架僅僅下降不到20%,比起以往為了增加疲勞壽命,大幅犧牲徑向強度的設計,有著顯著性的提升。綜合以上模擬以及實驗的結果,本研究在血管支架設計方面上提供了極具前瞻性的方向,成為未來提升血管支架疲勞強度研究的基石。
Stenting procedure has received great attention from the medical society since its introduction in 1990s. However, these intravascular stents could suffer from various repetitive motions due to pulsatile blood pressure and daily body activities after implantation, especially in the applications of peripheral arteries. Such motions oscillate the stents repeatedly, leading to the potential risk of stent fracture and fatigue failure. Such fatigue-related stent fracture has drawn much attention within the medical society in recent years and as a result, stent fatigue performance has become a major issue for stent design.
In this paper, an intriguing stent design concept aimed at enhancing fatigue life is proposed. The concept of this design is to shift the highly-concentrated stresses away from the crown region and re-distribute them along the stress-free bar arms by tapering the strut width. Finite element models (FEA) and Goodman fatigue life analysis were developed to evaluate the mechanical integrity and fatigue safety factor of the stent to various loading conditions. Simulation results show that the fatigue safety factor of our novel stent design jumped to 4 times that of a conventional stent. Conceptual stent prototypes were first cut by a pulsed-fiber optic laser module, followed by a series of expansions and heat treatments to gradually shape the stent to its final size and lastly, processed by electrochemical polishing to refine their surface roughness. A rotating bending fatigue tester was built for this study and stent fatigue tests were conducted for proof of concept. Experimental results show that our novel stent concept successfully enhanced the fatigue life as designed. The fatigue cycle number of our novel stent increased by 6-7 times that of a conventional stent, which agreed well with the trend predicted by the simulations, no matter whether the stents are tested in room temperature or in body temperature. Furthermore, the result of radial force test also indicates that compared to a conventional stent, which sacrifices even more radial strength for the sake of increasing the fatigue life, our pioneering stent only decreases slightly under 20% in radial strength. In conclusion, the findings of this paper provide an excellent guide to the optimization of future stent design to greatly improve stent fatigue life.
口試委員審定書 ii
誌謝 iii
摘要 iv
Abstract v
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1. 心血管疾病以及自動擴張支架之介紹 1
1.2. 血管支架的疲勞性質 3
1.3. 文獻探討 5
第二章 血管支架設計及模擬 9
2.1. 血液支架基本設計 9
2.2. 血管支架之模擬 11
2.2.1. 有限元素法模型之架設 11
2.2.2. 徑向力模擬 14
2.2.3. 疲勞強度模擬 14
2.3. 提升疲勞性質之設計概念 16
第三章 實驗結果驗證 26
3.1. 實驗支架製造 26
3.1.1. 雷射切割支架 27
3.1.2. 支架熱處理定型 28
3.1.3. 支架表面處理加工 29
3.2. 支架徑向力測試 33
3.2.1. 機台簡介以及實驗大綱 34
3.2.2. 徑向力實驗結果與討論 36
3.3. 創新疲勞測試機設計 43
3.3.1. 測定疲勞強度理論 44
3.3.2. 創新血管支架疲勞機之機構設計 45
3.3.3. 創新血管支架疲勞機之控制 52
3.4. 血管支架之疲勞測試實驗 55
3.4.1. 疲勞試驗實驗大綱 56
3.4.2. 疲勞試驗實驗數據與討論 58
第四章 結論與未來展望 65
4.1. 結論 65
4.2. 未來展望 66
參考文獻 68
[1] E. J. Benjamin et al., "Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association," Circulation, vol. 135, no. 10, p. e146, 2017.
[2] 中華民國衛生福利部(2018). Available: https://www.mohw.gov.tw/mp-1.html (accessed on 6 December 2018)
[3] S. Yusuf et al., "Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study," The lancet, vol. 364, no. 9438, pp. 937-952, 2004.
[4] P. D. Richardson, M. Davies, and G. Born, "Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques," The Lancet, vol. 334, no. 8669, pp. 941-944, 1989.
[5] M. Naghavi et al., "From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I," circulation, vol. 108, no. 14, pp. 1664-1672, 2003.
[6] S. W. Cheng, A. C. Ting, and J. Wong, "Endovascular stenting of superficial femoral artery stenosis and occlusions: results and risk factor analysis," Cardiovascular Surgery, vol. 9, no. 2, pp. 133-140, 2001.
[7] L. Cho, M. Roffi, D. Mukherjee, D. L. Bhatt, C. Bajzer, and J. S. Yadav, "Superficial femoral artery occlusion: nitinol stents achieve better flow and reduce the need for medications than balloon angioplasty alone," The Journal of invasive cardiology, vol. 15, no. 4, pp. 198-200, 2003.
[8] T. W. Duerig, A. Pelton, and D. Stöckel, "An overview of nitinol medical applications," Materials Science Engineering: A, vol. 273, pp. 149-160, 1999.
[9] Medtronic. Balloon- Expandable stents. Available: http://www.igiasi.gr/balloon-expandable-stents-visi-pro-paramount-mini/ (accessed on 6 December 2018)
[10] Global Peripheral Vascular Stents Market 2018 – Abbott Laboratories. Self Expanding Stent. Available: http://legmannews.com/global-peripheral-vascular-stents-market-2018/ (accessed on 6 December 2018)
[11] A. R. Pelton, V. Schroeder, M. R. Mitchell, X. Y. Gong, M. Barney, and S. W. Robertson, "Fatigue and durability of Nitinol stents," Journal of the Mechanical Behavior of Biomedical Materials, vol. 1, no. 2, pp. 153-164, 2008.
[12] Garcia-Toca, Manuel et al., "Are carotid stent fractures clinically significant?," Cardiovascular interventional radiology, vol. 35, no. 2, pp. 263-267, 2012.
[13] L. Petrini, W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati, "Fatigue behavior characterization of nitinol for peripheral stents," Functional Materials Letters, vol. 5, no. 01, p. 1250012, 2012.
[14] D. Scheinert et al., "Prevalence and clinical impact of stent fractures after femoropopliteal stenting," Journal of the American College of Cardiology, vol. 45, no. 2, pp. 312-315, 2005.
[15] M. Grujicic, B. Pandurangan, A. Arakere, and J. S. Snipes, "Fatigue-Life Computational Analysis for the Self-Expanding Endovascular Nitinol Stents," Journal of Materials Engineering and Performance, vol. 21, no. 11, pp. 2218-2230, 2012.
[16] J. M. Gibbs, C. S. Peña, and J. F. Benenati, "Treating the diseased superficial femoral artery," Techniques in vascular interventional radiology, vol. 13, no. 1, pp. 37-42, 2010.
[17] X. Gong, D. Chwirut, M. Mitchell, and B. Choules, "Fatigue to fracture: an informative, fast, and reliable approach for assessing medical implant durability," in Fatigue and Fracture of Medical Metallic Materials and Devices: 2nd Volume: ASTM International, 2010.
[18] S. E. Lee et al., "Clinical outcomes and optimal treatment for stent fracture after drug-eluting stent implantation," Journal of cardiology, vol. 53, no. 3, pp. 422-428, 2009.
[19] O. W. Bertacchini, C. Lagoudas, F. Calkin, and J. H. Mabe, "Transformation induced cyclic behavior and fatigue properties of nickel rich NiTi shape memory alloy actuators," in Proceedings of the ICOMAT, vol. 8. ,2008.
[20] X. Yan, D. Yang, and X. Liu, "Influence of heat treatment on the fatigue life of a laser-welded NiTi alloy wire," Materials Characterization, vol. 58, no. 3, pp. 262-266, 2007.
[21] H. M. Hsiao, Y. H. Chiu, K. H. Lee, and C. H. Lin, "Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior," Computer-Aided Design, vol. 44, no. 8, pp. 757-765, 2012.
[22] H. M. Hsiao, L. W. Wu, M. T. Yin, C. H. Lin, and H. Chen, "Quintupling fatigue resistance of intravascular stents via a simple design concept," Computational Materials Science, vol. 86, pp. 57-63, 2014.
[23] H. M. Hsiao and M. T. Yin, "An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents," Biomedical microdevices, vol. 16, no. 1, pp. 133-141, 2014.
[24] G. Alaimo, F. Auricchio, M. Conti, and M. Zingales, "Multi-objective optimization of nitinol stent design," Medical engineering & physics, vol. 47, pp. 13-24, 2017.
[25] D. Allegretti, F. Berti, F. Migliavacca, G. Pennati, and L. Petrini, "Fatigue Assessment of Nickel–Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models," Shape Memory and Superelasticity, vol. 4, no. 1, pp. 186-196, 2018.
[26] X. Y. Gong, A. R. Pelton, T. W. Duerig, N. Rebelo, and K. Perry, "Finite element analysis and experimental evaluation of superelastic Nitinol stent," in SMST–2003 Proc. International Conference on Shape Memory and Superelastic Technologies, pp. 453-462: SMST Society, Menlo Park, CA., 2004
[27] H. M. Hsiao, "Why similar stent designs cause new clinical issues," JACC: Cardiovascular Interventions, vol. 5, no. 3, p. 362, 2012.
[28] H. M. Hsiao, K. H. Lee, Y. C. Liao, and Y. C. Cheng, "Cardiovascular stent design and wall shear stress distribution in coronary stented arteries," IET Micro Nano Letters, vol. 7, no. 5, pp. 430-433, 2012.
[29] R. Rieu et al., "Radial force of coronary stents: a comparative analysis," Catheterization Cardiovascular Interventions, vol. 46, no. 3, pp. 380-391, 1999.
[30] ABAQUS UMAT for Superelasticity and Plasticity of Shape Memory Alloys document.
[31] F. Auricchio, "A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model," International Journal of plasticity, vol. 17, no. 7, pp. 971-990, 2001.
[32] F. Auricchio and R. L. Taylor, "Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior," Computer methods in applied mechanics engineering, vol. 143, no. 1-2, pp. 175-194, 1997.
[33] M. Eriksen, "Effect of pulsatile arterial diameter variations on blood flow estimated by Doppler ultrasound," Medical Biological Engineering Computing, vol. 30, no. 1, pp. 46-50, 1992.
[34] Guide for Radial Loading of Balloon Expandable and Self Expanding Vascular Stents.
[35] R. N. Ghriallais and M. Bruzzi, "Self-expanding stent modelling and radial force accuracy," Computer methods in biomechanics biomedical engineering, vol. 17, no. 4, pp. 318-333, 2014.
[36] U. FDA, "Guidance for industry and FDA staff. Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems," ed, 2007.
[37] T. M. Pham, M. DeHerrera, and W. Sun, "Analysis and simulation of PTMA device deployment into the coronary sinus: Impact of stent strut thickness," in Mechanics of Biological Systems and Materials, Volume 2: Springer, pp. 1-10., 2011.
[38] P. Adler, J. Allen, J. Lessar, and R. Francis, "Martensite transformations and fatigue behavior of nitinol," in Fatigue and fracture of medical metallic materials and devices: ASTM International, 2007.
[39] T. Duerig, D. Tolomeo, and M. Wholey, "An overview of superelastic stent design," Minimally Invasive Therapy & Allied Technologies, vol. 9, no. 3-4, pp. 235-246, 2000.
[40] Z. Lin and A. Denison, "Nitinol fatigue resistance–a strong function of surface quality," in Medical Device Materials: Proceeding of the Materials & Processes for Medical Devices Conference, pp. 205-208., 2004.
[41] Z. Lin, H. M. Hsiao, D. Mackiewicz, B. Anukhin, and K. Pike, "Anisotropic behavior of radiopaque NiTiPt hypotube for biomedical applications," Advanced Engineering Materials, vol. 11, no. 11, pp. B189-B193, 2009.
[42] 陳金壽, "應用位置同步輸出之觸發控制雷射於銦錫氧化物薄膜微加工," 2012.
[43] K. Otsuka and X. Ren, "Recent developments in the research of shape memory alloys," Intermetallics, vol. 7, no. 5, pp. 511-528, 1999.

[44] A. R. Pelton, J. Dicello, and S. Miyazaki, "Optimisation of processing and properties of medical grade Nitinol wire," Minimally Invasive Therapy Allied Technologies, vol. 9, no. 2, pp. 107-118, 2000.
[45] M. J. Drexel, "The effects of cold work and heat treatment on the properties of nitinol wire," 2006.
[46] P. R. Miller, R. Aggarwal, A. Doraiswamy, Y. J. Lin, Y. S. Lee, and R. J. Narayan, "Laser micromachining for biomedical applications," Jom, vol. 61, no. 9, pp. 35-40, 2009.
[47] 柯俊誼, "鎳鈦合金於植入式醫療器材上的多種應用,", 2016.
[48] B. Clarke, W. Carroll, Y. Rochev, M. Hynes, D. Bradley, and D. Plumley, "Influence of nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, The Australian Society for Biomaterials the Korean Society for Biomaterials, vol. 79, no. 1, pp. 61-70, 2006.
[49] T. Hahn and A. Marder, "Effect of electropolishing variables on the current density-voltage relationship," Metallography, vol. 21, no. 4, pp. 365-375, 1988.
[50] 陳貽和, "電化學陽極溶解反應模型研究,", 2013.
[51] C. Chu et al., "Surface structure and biomedical properties of chemically polished and electropolished NiTi shape memory alloys," Materials Science Engineering: C, vol. 28, no. 8, pp. 1430-1434, 2008.
[52] Á. Lengyel, P. Nagy, E. Bognár, and K. Hirschberg, "Development of Nitinol stents: electropolishing experiments," in Materials Science Forum, vol. 729, pp. 436-441: Trans Tech Publ., 2013.
[53] K. Otsuka and C. Wayman, "Mechanism of shape memory effect and superelasticity," Shape memory materials, pp. 27-49, 1998.
[54] T. W. Duerig, K. Melton, and D. Stöckel, Engineering aspects of shape memory alloys. Butterworth-Heinemann, 2013.
[55] H. Tobushi, T. Hachisuka, T. Hashimoto, and S. Yamada, "Cyclic deformation and fatigue of a TiNi shape-memory alloy wire subjected to rotating bending," Journal of engineering materials technology, vol. 120, no. 1, pp. 64-70, 1998.
[56] H. Tobushi, T. Hachisuka, S. Yamada, and P. H. Lin, "Rotating-bending fatigue of a TiNi shape-memory alloy wire," in ICF 9-Sydney, Australia-1997, 1997.
[57] 許益适, "步進馬達原理與應用," ed: 全華出版社, 1994.
[58] 南台科技大學, "步進馬達之速度控制,", 2010.
[59] Q. Huang and J. X. Ren, "Surface integrity and its effects on the fatigue life of the nickel-based superalloy GH33A," International Journal of Fatigue, vol. 13, no. 4, pp. 322-326, 1991.
[60] K. Sobczyk, "Modelling of random fatigue crack growth," Engineering fracture mechanics, vol. 24, no. 4, pp. 609-623, 1986.
[61] Y. C. Chiou, J. Z. Liu, and Y. T. Liang, "Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques," Sensor Review, vol. 31, no. 2, pp. 154-165, 2011.
[62] C. H. Park, L. D. Tijing, Y. Yun, and C. S. Kim, "A novel electrical potential sensing method for in vitro stent fracture monitoring and detection," Bio-medical materials engineering, vol. 21, no. 4, pp. 213-222, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top