(44.192.112.123) 您好!臺灣時間:2021/02/28 05:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許逸誠
研究生(外文):Yi-Cheng Shiu
論文名稱:具小光點之微懸臂感測系統之設計與開發
論文名稱(外文):Design and Development of a Cantilever Detection System with a Small Laser Spot Size
指導教授:廖先順
口試委員:楊志文高豐生
口試日期:2019-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:82
中文關鍵詞:微懸臂光偏折像散刀緣法靈敏度
DOI:10.6342/NTU201901155
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
原子力顯微鏡為一廣泛被使用之高解析度顯微技術,其擷取一張影像所耗費之時間通常在數分鐘以上。為了觀測各種動態現象,近年許多研究致力於高速原子力顯微鏡之開發,其中縮小微懸臂之尺寸為一提升量測頻寬之關鍵。然而,量測超小型微懸臂需要客製化之光偏折光路系統,其缺點為光路複雜以及體積大。本論文設計開發一具小光點之微懸臂感測系統,其模組化的設計具有體積小(25.5 × 25 × 48.5 mm3)、方便更換光學元件等優點。此外,可透過加裝一平凸柱面透鏡切換光偏折式及像散式兩種量測原理。實驗利用刀緣法量測聚焦光點尺寸,結果顯示微懸臂感測系統之光點直徑小於5 μm,可應用於量測超小型微懸臂。
Atomic force microscope (AFM) is a widely used high-resolution imagining technique, which takes several minutes to obtain one image. To observe dynamic phenomena, many studies devoted to develop the high-speed AFM in recent years. The results indicate that reducing the cantilever size is a key to increase the measurement bandwidth. However, to measure the ultra-small cantilever is required a customized beam-deflection optical system, which increases the optical complication and the size. In this thesis, a cantilever detection system with a small laser spot size was developed. The modular design has the advantages of the compact size (25.5 × 25 × 48.5 mm3) and easy replacement for optical components. Moreover, the beam-deflection and astigmatic methods can be switched through adding a cylindrical lens. In the experiment, the knife-edge method was utilized to measure the laser spot size. The results shows that the spot diameter of the cantilever detection system is less than 5 μm and fits the sized of ultra-small cantilevers.
口試委員會審定書…..I
致謝…..II
摘要…..III
Abstract…..IV
目錄…..V
表目錄…..VIII
圖目錄…..IX
符號表…..XIV
第一章 緒論…..1
1.1 研究背景…..1
1.2 文獻回顧…..3
1.2.1 AFM原理…..3
1.2.2 HS-AFM發展…..6
1.2.3 微懸臂偏折感測系統…..10
1.2.4 像散偵測系統…..15
1.3 研究目的…..18
1.4 內容簡介…..18
第二章 研究方法…..19
2.1 微懸臂…..19
2.2光路設計…..20
2.2.1 光偏折式光路設計…..20
2.2.2 像散式光路設計…..22
2.3 模組化光路結構設計與組裝…..25
2.3.1 平行光束結構…..26
2.3.2 內部結構…..26
2.3.3 外部結構…..27
2.3.4 聚焦光束結構…..28
2.3.5 像散元件結構…..28
2.4 微懸臂裝置與位置感測器裝置之設計…..29
2.4.1 微懸臂裝置…..29
2.4.2位置感測器裝置…..29
2.4.3 相對位置架設…..31
第三章 光點尺寸量測實驗與結果…..32
3.1 光點分析…..32
3.2 光點尺寸量測原理…..33
3.3 光點尺寸量測之系統架構與元件…..34
3.3.1 系統架構圖…..34
3.3.2 壓電掃描器與控制器…..36
3.3.3 控制系統…..37
3.3.4 XYZ精密線性移台…..38
3.3.5 雷射二極體與驅動電路板…..38
3.3.6 功率計…..39
3.3.7 L型支撐件…..39
3.4 光點尺寸定義…..40
3.5 非偏振分光鏡模組之測試…..40
3.6 偏振分光鏡模組之測試…..45
3.6.1 雷射水平向擺放模組…..45
3.6.2 雷射垂直向擺放模組…..48
3.6.3 針孔裝置模組…..51
3.6.4 延遲片模組…..55
3.7 光點尺寸測試結論…..60
第四章 靈敏度量測實驗與結果…..61
4.1 靈敏度量測方法…..61
4.2 靈敏度量測系統之架構與元件…..61
4.2.1 系統架構圖…..61
4.2.2 微懸臂與樣品…..64
4.2.3 位置感測器與訊號放大器…..64
4.2.4 量測步驟…..65
4.3 量測結果…..66
4.3.1 靈敏度結果示意…..66
4.3.2 光偏折式光路之靈敏度量測…..67
4.3.3 像散式光路之靈敏度量測…..70
4.4 靈敏度量測結論…..74
第五章 結論與未來展望…..76
參考文獻…..78
附件A 微懸臂探針(Tap300GD-G, Budget Sensors) …..82
D. J. Müller and Y. F. Dufrene, "Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology," Nanoscience And Technology: A Collection of Reviews from Nature Journals: World Scientific, vol. 3, pp. 269-277, 2010
P. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G.Hansma, C. B. Prater, J. Massie, L. Fukunaga, J. Gurley, and V. Elings, "Tapping mode atomic force microscopy in liquids," Applied Physics Letters, vol. 64, no. 13, pp. 1738-1740, 1994.
S. Manne, H. Butt, S. Gould, and P. Hansma, "Imaging metal atoms in air and water using the atomic force microscope," Applied physics letters, vol. 56, no. 18, pp. 1758-1759, 1990.
A. Weisenhorn, P. Hansma, T. Albrecht, and C. Quate, "Forces in atomic force microscopy in air and water," Applied Physics Letters, vol. 54, no. 26, pp. 2651-2653, 1989.
T. Ando, "High-speed AFM imaging," Current opinion in structural biology, vol. 28, pp. 63-68, 2014.
M. Shibata, T. Uchihashi, H. Yamashita, H. Kandori, and T. Ando, "Structural changes in bacteriorhodopsin in response to alternate illumination observed by high‐speed atomic force microscopy," Angewandte Chemie International Edition, vol. 50, no. 19, pp. 4410-4413, 2011.
T. Uchihashi, R. Iino, T. Ando, and H. Noji, "High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase," Science, vol. 333, no. 6043, pp. 755-758, 2011.
N. Kodera, D. Yamamoto, R. Ishikawa, and T. Ando, "Video imaging of walking myosin V by high-speed atomic force microscopy," Nature, vol. 468, no. 7320, p. 72, 2010.
P. K. Hansma, G. Schitter, G. E. Fantner, and C. Prater, "High-speed atomic force microscopy," Science, vol. 314, no. 5799, pp. 601-602, 2006.
T. Ando, "High-speed atomic force microscopy coming of age," Nanotechnology, vol. 23, no. 6, p. 062001, 2012.
H.-S. Liao, Y.-H. Chen, R.-F. Ding, H.-F. Huang, W.-M. Wang, E.-T. Hwu, K.-Y. Huang, C.-S. Chang, and I.-S.Hwang, "High-speed atomic force microscope based on an astigmatic detection system, "Review of Scientific Instruments, vol. 85, no. 10, p. 103710, 2014.
D. Walters, J. P. Cleveland, N. H. Thomson, P. K. Hansma, M. A. Wendman, G. Gurley, and V. Elings, "Short cantilevers for atomic force microscopy, "Review of Scientific Instruments, vol. 67, no. 10, pp. 3583-3590, 1996.
M. B. Viani, T. E. Schäffer, A. Chand, M. Rief, H. E. Gaub, and P. K. Hansma, "Small cantilevers for force spectroscopy of single molecules," Journal of Applied Physics, vol. 86, no. 4, pp. 2258-2262, 1999.
G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, "Surface studies by scanning tunneling microscopy," Physical review letters, vol. 49, no. 1, p. 57, 1982.
G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, no. 9, p. 930, 1986.
I. Sokolov, M. E. Dokukin, and N. V. Guz, "Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments," Methods, vol. 60, no. 2, pp. 202-213, 2013.
A. Touhami, B. Nysten, and Y. F. Dufrêne, "Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy," Langmuir, vol. 19, no. 11, pp. 4539-4543, 2003.
B. B. Sauer, R. S. McLean, and R. R. Thomas, "Tapping mode AFM studies of nano-phases on fluorine-containing polyester coatings and octadecyltrichlorosilane monolayers," Langmuir, vol. 14, no. 11, pp. 3045-3051, 1998.
R. Barrett and C. Quate, "High‐speed, large‐scale imaging with the atomic force microscope," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 9, no. 2, pp. 302-306, 1991.
T. Ando, N. Kodera, D. Maruyama, E. Takai, K. Saito, and A. Toda, "A high-speed atomic force microscope for studying biological macromolecules in action," Japanese Journal of Applied Physics, vol. 41, no. 7S, p. 4851, 2002.
T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, "A high-speed atomic force microscope for studying biological macromolecules," Proceedings of the National Academy of Sciences, vol. 98, no. 22, pp. 12468-12472, 2001.
A. Humphris, M. Miles, and J. Hobbs, "A mechanical microscope: High-speed atomic force microscopy," Applied physics letters, vol. 86, no. 3, p. 034106, 2005.
G. E. Fantner, G. Schittera, J. H. Kindta, T. Ivanovb, K. Ivanova, R. Patel, N. Holten-Andersen, J. Adams, P. J. Thurner, I. W. Rangelow, and P. K. Hansm, "Components for high speed atomic force microscopy," Ultramicroscopy, vol. 106, no. 8-9, pp. 881-887, 2006.
T. Uchihashi, T. Ando, and H. Yamashita, "Fast phase imaging in liquids using a rapid scan atomic force microscope," Applied physics letters, vol. 89, no. 21, p. 213112, 2006.
H. Watanabe, T. Uchihashi, T. Kobashi, M. Shibata, J. Nishiyama, R.Yasuda, and T. Ando, "Wide-area scanner for high-speed atomic force microscopy," Review of Scientific Instruments, vol. 84, no. 5, p. 053702, 2013.
Y. Suzuki, N. Sakai, A. Yoshida, Y. Uekusa, A. Yagi, Y. Imaoka, S. Ito, K. Karaki, and K. Takeyasu1, "High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events," Scientific reports, vol. 3, p. 2131, 2013.
T. Ando, T. Uchihashi, and T. Fukuma, "High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes," Progress in Surface Science, vol. 83, no. 7-9, pp. 337-437, 2008.
T. E. Schaeffer, M. Viani, D. A. Walters, B. Drake, E. K. Runge, J. P. Cleveland, M. A. Wendman, and P. K. Hansma, "Atomic force microscope for small cantilevers," in Micromachining and Imaging, 1997, vol. 3009: International Society for Optics and Photonics, pp. 48-53.
S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, "An atomic‐resolution atomic‐force microscope implemented using an optical lever," Journal of Applied Physics, vol. 65, no. 1, pp. 164-167, 1989.
T. Sulchek, R. Hsieh, J. Adams, S. Minne, C. Quate, and D. Adderton, "High-speed atomic force microscopy in liquid," Review of Scientific Instruments, vol. 71, no. 5, pp. 2097-2099, 2000.
T. Schäffer, J. Cleveland, F. Ohnesorge, D. Walters, and P. Hansma, "Studies of vibrating atomic force microscope cantilevers in liquid," Journal of applied physics, vol. 80, no. 7, pp. 3622-3627, 1996.
J. D. Adams, A. Nievergelt, B. W. Erickson, C. Yang, M. Dukic, and G. E. Fantner, "High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers," Review of Scientific Instruments, vol. 85, no. 9, p. 093702, 2014.
E.-T. Hwu, S.-K. Hung, C.-W. Yang, K.-Y. Huang, and I.-S. Hwang, "Real-time detection of linear and angular displacements with a modified DVD optical head," Nanotechnology, vol. 19, no. 11, p. 115501, 2008.
E.-T. Hwu, S.-K. Hung, C.-W. Yang, I.-S. Hwang, and K.-Y. Huang, "Simultaneous detection of translational and angular displacements of micromachined elements," Applied Physics Letters, vol. 91, no. 22, p. 221908, 2007.
H.-S. Liao et al., "Operation of astigmatic-detection atomic force microscopy in liquid environments," Review of Scientific Instruments, vol. 84, no. 10, p. 103709, 2013.
G. Matei, E. Thoreson, J. R. Pratt, D. B. Newell, and N. Burnham, "Precision and accuracy of thermal calibration of atomic force microscopy cantilevers," Review of Scientific Instruments, vol. 77, no. 8, p. 083703, 2006.
R. E. Fischer and B. Tadic-Galeb, "Optical System Design," 2001. The McGraw-Hill Companies, Inc.
D. Wright, P. Greve, J. Fleischer, and L. Austin, "Laser beam width, divergence and beam propagation factor—an international standardization approach," Optical and Quantum Electronics, vol. 24, no. 9, pp. S993-S1000, 1992.
T. F. Johnston, "Beam propagation (M 2) measurement made as easy as it gets: the four-cuts method," Applied optics, vol. 37, no. 21, pp. 4840-4850, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔