|
[1]“Deafness and hearing loss.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss. [Accessed: 13-May-2019]. [2]“Alessandro Volta,” Wikipedia. 10-May-2019. [3]A. Djourno and C. Eyries, “Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling,” Presse Med., vol. 65, no. 63, p. 1417, Aug. 1957. [4]“The history of cochlear implants.” [Online]. Available: http://www.eng.tau.ac.il/~gefen/pr2002/6/project/The%20history%20of%20Cochlear%20Implants.htm. [Accessed: 14-May-2019]. [5]W. F. House and J. Urban, “Long term results of electrode implantation and electronic stimulation of the cochlea in man,” Ann. Otol. Rhinol. Laryngol., vol. 82, no. 4, pp. 504–517, Jul. 1973. [6]“Concerning the pleasures of observing, and the mechanics of the inner ear,” NobelPrize.org. [Online]. Available: https://www.nobelprize.org/prizes/medicine/1961/bekesy/facts/. [Accessed: 15-May-2019]. [7]G. M. Clark, “The multichannel cochlear implant for severe-to-profound hearing loss,” Nat. Med., vol. 19, no. 10, pp. 1236–1239, Oct. 2013. [8]P. L. Mac, P. Pialoux, C. H. Chouard, and B. Meyer, “Physiological assessment of the rehabilitation of total deafness by the implantation of multiple intracochlear electrodes.,” Ann. Oto-Laryngol. Chir. Cervico Faciale Bull. Soc. Oto-Laryngol. Hopitaux Paris, vol. 92, no. 1–2, pp. 17–23, 1975. [9]E. F. Evans, “The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea,” Audiology, vol. 14, no. 5–6, pp. 419–442, Jan. 1975. [10]B. Townshend, N. Cotter, D. Van Compernolle, and R. L. White, “Pitch perception by cochlear implant subjects,” J. Acoust. Soc. Am., vol. 82, no. 1, pp. 106–115, Jul. 1987. [11]P. J. Blamey and G. M. Clark, “Place coding of vowel formants for cochlear implant patients,” J. Acoust. Soc. Am., vol. 88, no. 2, pp. 667–673, Aug. 1990. [12]K. L. Horn, N. B. McMahon, D. C. Mcmahon, J. S. Lewis, M. Barker, and S. Gherini, “Functional use of the nucleus® 22-channel cochlear implant in the elderly,” The Laryngoscope, vol. 101, no. 3, pp. 284–288, Mar. 1991. [13]J. J. Galvin, Q.-J. Fu, and G. Nogaki, “Melodic contour identification by cochlear implant listeners,” Ear Hear., vol. 28, no. 3, pp. 302–319, Jun. 2007. [14]M. Azadpour and C. M. McKay, “A psychophysical method for measuring spatial resolution in cochlear implants,” JARO J. Assoc. Res. Otolaryngol., vol. 13, no. 1, pp. 145–157, Feb. 2012. [15]S. M. Brill et al., “Optimization of channel number and stimulation rate for the fast continuous interleaved sampling strategy in the COMBI 40+,” Am. J. Otol., vol. 18, no. 6 Suppl, pp. S104-106, Nov. 1997. [16]Fishman Kim E., Shannon Robert V., and Slattery William H., “Speech recognition as a function of the number of electrodes used in the speak cochlear implant speech processor,” J. Speech Lang. Hear. Res., vol. 40, no. 5, pp. 1201–1215, Oct. 1997. [17]E. Buss, L. J. Leibold, H. L. Porter, and J. H. Grose, “Speech recognition in one- and two-talker maskers in school-age children and adults: Development of perceptual masking and glimpsing,” J. Acoust. Soc. Am., vol. 141, no. 4, p. 2650, 2017. [18]E. Buss, L. J. Leibold, and J. W. Hall, “Effect of response context and masker type on word recognition in school-age children and adults,” J. Acoust. Soc. Am., vol. 140, no. 2, pp. 968–977, Aug. 2016. [19]J. Benichov, L. C. Cox, P. A. Tun, and A. Wingfield, “Word recognition within a linguistic context: effects of age, hearing acuity, verbal ability, and cognitive function,” Ear Hear., vol. 33, no. 2, pp. 250–256, Apr. 2012. [20]R. H. Gifford et al., “The relationship between spectral modulation detection and speech recognition: Adult versus pediatric cochlear implant recipients,” Trends Hear., vol. 22, p. 2331216518771176, Jan. 2018. [21]N. M. Amichetti, E. Atagi, Y. Y. Kong, and A. Wingfield, “Linguistic context versus semantic competition in word recognition by younger and older adults with cochlear implants.,” Ear Hear., vol. 39, no. 1, pp. 101–109, Feb. 2018. [22]F. Zeng, “Challenges in improving cochlear implant performance and accessibility,” IEEE Trans. Biomed. Eng., vol. 64, no. 8, pp. 1662–1664, Aug. 2017. [23]T.-C. Tsou and Y.-F. Chou, The feasibility study of electronic stimulating cochlear nerve outside the cochlear. National Taiwan University Master Thesis, 2014. [24]K. Birmingham et al., “Bioelectronic medicines: A research roadmap,” Nat. Rev. Drug Discov., vol. 13, pp. 399–400, May 2014. [25]K. Famm, B. Litt, K. J. Tracey, E. S. Boyden, and M. Slaoui, “Drug discovery: A jump-start for electroceuticals,” Nature, vol. 496, pp. 159–161, Apr. 2013. [26]P. B. Osborne, “Stimulating bioelectronic medicine discovery for urological disorders,” Am. J. Physiol.-Ren. Physiol., vol. 313, no. 5, pp. F1133–F1135, Aug. 2017. [27]A. E. Hadjinicolaou et al., “Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis,” Biomaterials, vol. 33, no. 24, pp. 5812–5820, Aug. 2012. [28]E. Margalit et al., “Retinal prosthesis for the blind,” Surv. Ophthalmol., vol. 47, no. 4, pp. 335–356, Jul. 2002. [29]J. D. Weiland, W. Liu, and M. S. Humayun, “Retinal prosthesis,” Annu Rev Biomed Eng, vol. 7, pp. 361–401, 2005. [30]J.-P. Guyot, A. Sigrist, M. Pelizzone, G. C. Feigl, and M. I. Kos, “Eye movements in response to electrical stimulation of the lateral and superior ampullary nerves,” Ann. Otol. Rhinol. Laryngol., vol. 120, no. 2, pp. 81–87, Feb. 2011. [31]N. S. Davidovics, G. Y. Fridman, B. Chiang, and C. C. D. Santina, “Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 1, pp. 84–94, Feb. 2011. [32]S. C. Kabay, S. Kabay, M. Yucel, and H. Ozden, “Acute urodynamic effects of percutaneous posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with Parkinson’s disease,” Neurourol. Urodyn., vol. 28, no. 1, pp. 62–67, Jan. 2009. [33]M. S. George and G. Aston-Jones, “Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS),” Neuropsychopharmacology, vol. 35, no. 1, pp. 301–316, Jan. 2010. [34]R. Fuentes, P. Petersson, W. B. Siesser, M. G. Caron, and M. A. L. Nicolelis, “Spinal cord stimulation restores locomotion in animal models of Parkinson’s Disease,” Science, vol. 323, no. 5921, pp. 1578–1582, Mar. 2009. [35]G. Clark, “Cochlear implant,” in Speech Processing in the Auditory System, S. Greenberg, W. A. Ainsworth, A. N. Popper, and R. R. Fay, Eds. New York, NY: Springer New York, 2004, pp. 422–462. [36]A. Mudry and M. Mills, “The early history of the cochlear implant: A retrospective,” JAMA Otolaryngol. Neck Surg., vol. 139, no. 5, pp. 446–453, May 2013. [37]A. Dhanasingh and C. Jolly, “An overview of cochlear implant electrode array designs,” Hear. Res., vol. 356, pp. 93–103, Dec. 2017. [38]I. Mosnier et al., “Long-term cognitive prognosis of profoundly deaf older adults after hearing rehabilitation using cochlear implants,” J. Am. Geriatr. Soc., vol. 66, no. 8, pp. 1553–1561, 2018. [39]Y. Lei, R. Sun, X. Zhang, X. Feng, and L. Jiang, “Oxygen-rich enzyme biosensor based on superhydrophobic electrode,” Adv. Mater., vol. 28, no. 7, pp. 1477–1481, 2016. [40]R. Yuan, H. Li, X. Yin, J. Lu, and L. Zhang, “3D CuO nanosheet wrapped nanofilm grown on Cu foil for high-performance non-enzymatic glucose biosensor electrode,” Talanta, vol. 174, pp. 514–520, Nov. 2017. [41]R. B. Rakhi, P. Nayak, C. Xia, and H. N. Alshareef, “Novel amperometric glucose biosensor based on MXene nanocomposite,” Sci. Rep., vol. 6, p. 36422, Nov. 2016. [42]Y.-J. Wu et al., “Conformal deposition of Pt on titania nanotubes to produce a bio-electrode for neuro-stimulating applications,” Electrochem. Commun., vol. 88, pp. 61–66, Mar. 2018. [43]N. N. Maslakci, F. D. Danas, and A. U. Oksuz, “QCM-DNA biosensor based on plasma modified PT/TiO2 nanocomposites,” J. Macromol. Sci. Part A, vol. 53, no. 5, pp. 311–316, May 2016. [44]B. Ji et al., “Flexible bioelectrodes with enhanced wrinkle microstructures for reliable electrochemical modification and neuromodulation in vivo,” Biosens. Bioelectron., vol. 135, pp. 181–191, Jun. 2019. [45]D. W. Kumsa, N. Bhadra, E. M. Hudak, S. C. Kelley, D. F. Untereker, and J. T. Mortimer, “Electron transfer processes occurring on platinum neural stimulating electrodes: a tutorial on thei(Ve) profile,” J. Neural Eng., vol. 13, no. 5, p. 052001, Aug. 2016. [46]E. M. Hudak, D. W. Kumsa, H. B. Martin, and J. T. Mortimer, “Electron transfer processes occurring on platinum neural stimulating electrodes: calculated charge-storage capacities are inaccessible during applied stimulation,” J. Neural Eng., vol. 14, no. 4, p. 046012, May 2017. [47]D. W. Kumsa, E. M. Hudak, N. Bhadra, and J. T. Mortimer, “Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-imbalanced, biphasic pulses for 0.566 ⩽ k ⩽ 2.3 in rat subcutaneous tissues,” J. Neural Eng., vol. 16, no. 2, p. 026018, Apr. 2019. [48]C.-Y. Chen et al., “A biocompatible needle-type glucose sensor based on platinum-electroplated carbon electrode,” Appl. Biochem. Biotechnol., vol. 36, no. 3, p. 211, Sep. 1992. [49]S. Patra et al., “Design of metal organic framework–enzyme based bioelectrodes as a novel and highly sensitive biosensing platform,” J. Mater. Chem. B, vol. 3, no. 46, pp. 8983–8992, 2015. [50]N. Nesakumar, S. Sethuraman, U. M. Krishnan, and J. B. B. Rayappan, “Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice,” Biosens. Bioelectron., vol. 77, pp. 1070–1077, Mar. 2016. [51]S. P. Khan, G. G. Auner, O. Palyvoda, and G. M. Newaz, “Biocompatibility assessment of next generation materials for brain implantable microelectrodes,” Mater. Lett., vol. 65, no. 5, pp. 876–879, Mar. 2011. [52]J. D. Weiland and D. J. Anderson, “Chronic neural stimulation with thin-film, iridium oxide electrodes,” IEEE Trans. Biomed. Eng., vol. 47, no. 7, pp. 911–918, Jul. 2000. [53]S. Negi, R. Bhandari, L. Rieth, and F. Solzbacher, “In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays,” Biomed. Mater., vol. 5, no. 1, p. 015007, 2010. [54]J. D. Weiland, D. J. Anderson, and M. S. Humayun, “In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes,” IEEE Trans. Biomed. Eng., vol. 49, no. 12, pp. 1574–1579, Dec. 2002. [55]T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, and H. Takenaka, “IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells,” J. Appl. Electrochem., vol. 31, no. 11, pp. 1179–1183, Nov. 2001. [56]Y. Zhang, C. Wang, N. Wan, and Z. Mao, “Deposited RuO2–IrO2/Pt electrocatalyst for the regenerative fuel cell,” Int. J. Hydrog. Energy, vol. 32, no. 3, pp. 400–404, Mar. 2007. [57]G. Hong, “Auditory brainstem response.” [Online]. Available: http://www.ling.fju.edu.tw/hearing/brainhearing.htm. [Accessed: 30-May-2019]. [58]“Potenziali evocati acustici (ABR),” Montallegro. [Online]. Available: https://www.montallegro.it/servizi/otorinolaringoiatria/esami-strumentali/potenziali-evocati-acustici-abr/. [Accessed: 02-May-2019]. [59]K. P. Hunter and J. F. Willott, “Aging and the auditory brainstem response in mice with severe or minimal presbycusis,” Hear. Res., vol. 30, no. 2, pp. 207–218, Jan. 1987. [60]X. Zhou, P. H.-S. Jen, K. L. Seburn, W. N. Frankel, and Q. Y. Zheng, “Auditory brainstem responses in 10 inbred strains of mice,” Brain Res., vol. 1091, no. 1, pp. 16–26, May 2006. [61]B. Coomber, J. I. Berger, V. L. Kowalkowski, T. M. Shackleton, A. R. Palmer, and M. N. Wallace, “Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig,” Eur. J. Neurosci., vol. 40, no. 2, pp. 2427–2441, Jul. 2014. [62]Y. Klein, O. Fleissig, A. Stabholz, S. Chaushu, and D. Polak, “Bone regeneration with bovine bone impairs orthodontic tooth movement despite proper osseous wound healing in a novel mouse model,” J. Periodontol., vol. 90, no. 2, pp. 189–199, 2019. [63]R. Amanipour, S. Cresoe, C. Borlongan, R. Frisina, and J. Walton, “Effects of mild traumatic brain injury on auditory function in a mouse model,” in 2016 32nd Southern Biomedical Engineering Conference (SBEC), 2016, pp. 13–14. [64]N. Vallecillo, M. A. Pajares, S. H. Zeisel, L. Rodriguez-de la Rosa, and I. Varela-Nieto, “Expression and regulation of the methionine cycle genes in the mouse cochlea,” presented at the Congreso de la SEBBM, 2016. [65]O. Akil, A. E. Oursler, K. Fan, and L. R. Lustig, “Mouse auditory brainstem response testing,” Bio-Protoc., vol. 6, no. 6, Mar. 2016. [66]A. Radeloff, A. Becker, J. Stumper, S. Gürtler, K. Bomke, and K. Radeloff, “Significance of ABR in newborn hearing screening for detection of children with auditory neuropathy spectrum disorders,” in Laryngo-Rhino-Otologie, 2018, vol. 97, p. 10694. [67]A. K. Paul, “Centralized newborn hearing screening in Ernakulam, Kerala–Experience over a decade,” Indian Pediatr., vol. 53, no. 1, pp. 15–17, Jan. 2016. [68]Yoonjae Song, Mun Young Chang, Min Young Lee, Eun Young Lee, Sun O. Chang, and Jun Ho Lee, “Development of novel criteria models for the prediction of acoustic tumor using click and chirp-evoked ABR,” J. Hear. Sci., vol. 7, no. 2, pp. 60–60, May 2017. [69]M. Don, B. Kwong, C. Tanaka, D. Brackmann, and R. Nelson, “The stacked ABR: A sensitive and specific screening tool for detecting small acoustic tumors,” Audiol. Neurotol., vol. 10, no. 5, pp. 274–290, 2005. [70]N. M. Fernández, C. de Paula Vernetta, L. C. Garrido, M. D. Gómez, and C. M. Pérez, “Electrically evoked auditory brainstem response over round window by bipolar stimulation,” J. Int. Adv. Otol., vol. 14, no. 3, pp. 370–374, Dec. 2018. [71]P. R. Kileny and J. L. Kemink, “Electrically evoked middle-latency auditory potentials in cochlear implant candidates,” Arch. Otolaryngol. Neck Surg., vol. 113, no. 10, pp. 1072–1077, Oct. 1987. [72]N. M. Said Abdelsalam and P. O. Afifi, “Electric auditory brainstem response (E-ABR) in cochlear implant children: Effect of age at implantation and duration of implant use,” Egypt. J. Ear Nose Throat Allied Sci., vol. 16, no. 2, pp. 145–150, Jul. 2015. [73]D. Polterauer, J. Müller, G. Mandruzzato, M. Neuling, M. Polak, and J.-M. Hempel, “Feasibility of promontory stimulation eABR recording in cochlear implant candidates with MED-EL clinical system: an update,” J. Hear. Sci., vol. 8, no. 2, pp. 164–164, Jun. 2018. [74]“Laminin-coated electrodes improve cochlear implant function and post-insertion neuronal survival - ScienceDirect.” [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306452219303045. [Accessed: 16-May-2019]. [75]“Hearingtune Professional Services Ltd.” [Online]. Available: http://hearingtune.com/index.php?route=information/information&information_id=8. [Accessed: 25-Feb-2019]. [76]“What part of the ear contains the sensory receptors for hearing? | Socratic,” Socratic.org. [Online]. Available: https://socratic.org/questions/what-part-of-the-ear-contains-the-sensory-receptors-for-hearing. [Accessed: 27-Feb-2019]. [77]“Sensorineural Hearing Loss (SNHL): Sensorine,” BSR Hearing Aids and Speech Therapy Clinic 08039117274. [Online]. Available: http://www.hearingaidspeechclinic.com/latest-update/sensorineural-hearin/32. [Accessed: 27-Feb-2019]. [78]“Human ear - Transmission of sound within the inner ear,” Encyclopedia Britannica. [Online]. Available: https://www.britannica.com/science/ear. [Accessed: 05-Mar-2019]. [79]“Volley theory,” Wikipedia. 14-Dec-2018. [80]J. Naturale, “InfoGuides: Deaf technologies: Amplification technologies.” [Online]. Available: //infoguides.rit.edu/c.php?g=460666&p=3202513. [Accessed: 11-Mar-2019]. [81]K. Arora, “Cochlear implant simulation rates and speech perception,” in Modern Speech Recognition Approaches with Case Studies, S. Ramakrishnan, Ed. InTech, 2012. [82]Z. Zhu, Q. Tang, F.-G. Zeng, T. Guan, and D. Ye, “Cochlear implant spatial selectivity with monopolar, bipolar and tripolar stimulation,” Hear. Res., vol. 283, no. 1–2, pp. 45–58, Jan. 2012. [83]C. Arnoldner et al., “The intensity–Pitch relation revisited: Monopolar versus bipolar cochlear stimulation:,” The Laryngoscope, vol. 118, no. 9, pp. 1630–1636, Sep. 2008. [84]R. P. Carlyon, J. M. Deeks, J. Undurraga, O. Macherey, and A. van Wieringen, “Spatial selectivity in cochlear implants: Effects of asymmetric waveforms and development of a single-point measure,” J. Assoc. Res. Otolaryngol., vol. 18, no. 5, pp. 711–727, Oct. 2017. [85]C. A. Fielden, K. Kluk, P. J. Boyle, and C. M. McKay, “The perception of complex pitch in cochlear implants: A comparison of monopolar and tripolar stimulation,” J. Acoust. Soc. Am., vol. 138, no. 4, pp. 2524–2536, Oct. 2015. [86]D. A. Chari, P. Jiradejvong, and C. J. Limb, “Tripolar stimulation improves polyphonic pitch detection in cochlear implant users,” Otol. Neurotol., vol. 40, no. 1, pp. 38–46, Jan. 2019. [87]C.-F. Lee, P.-R. Chen, W.-J. Lee, Y.-F. Chou, J.-H. Chen, and T.-C. Liu, “Computer aided modeling of human mastoid cavity biomechanics using finite element analysis,” EURASIP J. Adv. Signal Process., vol. 2010, no. 1, p. 203037, Aug. 2009. [88]Chia-Fone Lee et al., “Effects of optimal electrodes on bone-guided extracochlear implants for electrically stimulating auditory nerve in guinea pig,” Journal of Neural Engineering, [Submitted]. [89]C. van den Honert and P. H. Stypulkowski, “Characterization of the electrically evoked auditory brainstem response (ABR) in cats and humans,” Hear. Res., vol. 21, no. 2, pp. 109–126, Jan. 1986. [90]X. Qian et al., “Design and in-vivo verification of a CMOS bone-guided cochlear implant microsystem,” IEEE Trans. Biomed. Eng., pp. 1–1, 2019. [91]D.-W. Park et al., “Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in GCaMP6f mice,” ACS Nano, vol. 12, no. 1, pp. 148–157, Jan. 2018. [92]H. C. Pillsbury et al., “Multicenter US clinical trial with an electric-acoustic stimulation (EAS) system in adults: Final outcomes,” Otol. Neurotol., vol. 39, no. 3, pp. 299–305, Mar. 2018. [93]M. Sato, P. Baumhoff, J. Tillein, and A. Kral, “Physiological mechanisms in combined electric–Acoustic stimulation:,” Otol. Neurotol., vol. 38, no. 8, pp. e215–e223, Sep. 2017. [94]J. Kiefer et al., “Combined electric and acoustic stimulation of the auditory system: Results of a clinical study,” Audiol. Neurotol., vol. 10, no. 3, pp. 134–144, 2005. [95]C. W. Turner, L. A. J. Reiss, and B. J. Gantz, “Combined acoustic and electric hearing: Preserving residual acoustic hearing,” Hear. Res., vol. 242, no. 1–2, pp. 164–171, Aug. 2008. [96]B. J. Gantz, C. C. Dunn, J. Oleson, and M. R. Hansen, “Acoustic plus electric speech processing: Long-term results: A+E: long-term Results,” The Laryngoscope, vol. 128, no. 2, pp. 473–481, Feb. 2018. [97]“EAS hearing implants | hearLIFE.” [Online]. Available: https://www.hearlifeclinic.com/ca/show/index/id/86/title/EAS-HEARING-IMPLANTS. [Accessed: 31-May-2019]. [98]H. Yi, W. Guo, W. Chen, L. Chen, J. Ye, and S. Yang, “Miniature pigs: a large animal model of cochlear implantation,” Am. J. Transl. Res., vol. 8, no. 12, pp. 5494–5502, Dec. 2016.
|