(44.192.112.123) 您好!臺灣時間:2021/02/28 05:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧永珊
研究生(外文):Yung-Shan Lu
論文名稱:骨導式耳蝸外人工電子耳—多通道電極最佳化
論文名稱(外文):Bone-guided Extracochlear Implants—Optimization of Multi-channel Electrodes
指導教授:劉建豪劉建豪引用關係
指導教授(外文):Chien-Hao Liu
口試委員:蕭浩明楊燿州
口試委員(外文):Hao-Ming HsiaoYao-Joe Yang
口試日期:2019-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:123
中文關鍵詞:骨導式人工電子耳動物實驗氧化銥多通道刺激
DOI:10.6342/NTU201900995
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現行的人工電子耳透過植入式電極對聽覺神經電刺激,使全聾患者感受到電世界之聽覺,但其缺點包括手術之風險,與刺激電極長時間放入耳蝸內,對聽損患者耳蝸造成的傷害,並會破壞患者殘存之聽力。因此本研究延續鄒宗杰學長之研究,將刺激電極改放置於耳蝸骨與圓窗膜上,當於刺激電極施加刺激電流時,其產生之電場可誘發基底膜上聽覺神經產生動作電位,其優點為不破壞耳蝸,亦可保留患者低頻的殘留聽力。
本文利用有限元素模擬骨導式耳蝸外單一電極電刺激對耳蝸內基底膜上的影響,發現不論刺激電極距離圓窗多遠,最大電場都出現在圓窗附近。並配合天竺鼠動物實驗,利用聽性腦幹誘發反應測量天竺鼠之聽覺神經反應,並改變刺激電極之大小、改變刺激電極之金屬材料,包含金、白金、氧化銥三種材料,尋找最佳的刺激電極,其中電極大小對電刺激之結果影響不大,在三種材料裡,氧化銥具有較低的刺激電流閾值,因此即為較佳之材料;透過大分貝之白噪音間接使天竺鼠耳聾,並進行骨導式耳蝸外電刺激,可觀察出其可成功誘發聽覺神經產生腦波電位反應;透過長時間的電刺激,模擬長時間配戴人工電子耳對耳蝸造成的傷害,而由耳蝸切片結果可知並不會有太大的損害。
再者因為耳蝸具有分頻刺激聽覺神經之現象,故須達到分區段刺激耳蝸之聽覺神經,故先利用有限元素模擬多通道電刺激對耳蝸內基底膜之影響,可觀察出其可利用添加一反相電流,抵銷圓窗附近較大之電場。再配合天竺鼠動物實驗,採用多通道之刺激電極,利用反相電流,削弱其他區段之電場,使愈刺激之區段有較大的電場值,結果證實在旁添加反相電流,即可削弱電場,使其聽覺神經反應減弱。
Cochlear implants put electrode arrays into the cochlea by round window and use electrical signals to stimulate the auditory nerves. However, it has the risk of surgery by placing the electrode into the cochlea and damages the cochlea permanently that will make patients who wear cochlear implant loss their residual hearing. Therefore, this study put the stimulus electrodes on the cochlear bone and round window membrane instead of inside the cochlea. In this way, it can maintain the residual hearing for the patients.
In this study, the result of the single electrode stimulation through cochlear bone by Ansys Maxwell software shows that it will have the largest electric field near round window no matter what distance. In order to stimulate specific regions, it must be multi-channel electrodes. If there is an upside stimulus current through the electrode around the round window, it may decrease the largest electric field near round window.
Besides, to compare the size and three materials of the electrodes (gold, platinum, and iridium oxide), it takes an animal experiment by measuring the auditory brainstem response on Guinea pigs after the electrical stimulation. In this study, the size of the electrodes doesn’t affect the stimulations and iridium oxide has the lower threshold stimulus current. In order to prove the feasibility of the stimulation on cochlear bone for the deaf, using the loud white noise indirectly make the Guinea pigs deaf. Then, the result of the deaf mouse shows it successfully induce the auditory nerves. Through long-term stimulation, it hasn’t have any damage to the cochlea. Finally, it reduces the electric field when there is an upside stimulus current near round window by multi-channel electrodes.
口試委員審定書 #
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xiv
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 人工電子耳之發展 2
1.2.2 刺激電極與材料 6
1.2.3 聽性腦幹誘發反應(Auditory brainstem response) 10
1.3 本文內容 14
第二章 聽覺系統與助聽器介紹 15
2.1 聽覺構造 15
2.1.1 聽覺系統 15
2.1.2 耳蝸結構 17
2.2 聽覺學說 18
2.2.1 行波學說(Travelling-wave Theory) 18
2.2.2 頻率學說(Frequency Theory) 19
2.3 助聽器 21
2.3.1 非侵入式助聽器(Hearing aid) 21
2.3.2 人工電子耳(Cochlear) 22
第三章 電刺激模擬 26
3.1 簡易耳蝸模型 26
3.1.1 單一電極電刺激 29
3.1.2 多通道電極電刺激 37
3.2 真實耳蝸模型 49
3.2.1 單一電極電刺激 51
3.2.2 多通道電極電刺激 54
第四章 實驗架構與結果 57
4.1 實驗架構 57
4.1.1 自然聽力實驗 57
4.1.2 電刺激實驗 59
4.2 自然聽力實驗結果 63
4.3 刺激電極大小比較 70
4.4 刺激電極之金屬材料比較 74
4.5 受損耳蝸之電刺激實驗 83
4.6 長時間電刺激實驗 98
4.7 多通道電刺激 102
第五章 結論與展望 111
5.1 結論 111
5.2 未來展望 112
5.2.1 更改刺激電極基板材料 112
5.2.2 自然聽力與電刺激同時刺激 113
5.2.3 大型動物骨導式耳蝸外電刺激實驗 115
參考文獻 116
[1]“Deafness and hearing loss.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss. [Accessed: 13-May-2019].
[2]“Alessandro Volta,” Wikipedia. 10-May-2019.
[3]A. Djourno and C. Eyries, “Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling,” Presse Med., vol. 65, no. 63, p. 1417, Aug. 1957.
[4]“The history of cochlear implants.” [Online]. Available: http://www.eng.tau.ac.il/~gefen/pr2002/6/project/The%20history%20of%20Cochlear%20Implants.htm. [Accessed: 14-May-2019].
[5]W. F. House and J. Urban, “Long term results of electrode implantation and electronic stimulation of the cochlea in man,” Ann. Otol. Rhinol. Laryngol., vol. 82, no. 4, pp. 504–517, Jul. 1973.
[6]“Concerning the pleasures of observing, and the mechanics of the inner ear,” NobelPrize.org. [Online]. Available: https://www.nobelprize.org/prizes/medicine/1961/bekesy/facts/. [Accessed: 15-May-2019].
[7]G. M. Clark, “The multichannel cochlear implant for severe-to-profound hearing loss,” Nat. Med., vol. 19, no. 10, pp. 1236–1239, Oct. 2013.
[8]P. L. Mac, P. Pialoux, C. H. Chouard, and B. Meyer, “Physiological assessment of the rehabilitation of total deafness by the implantation of multiple intracochlear electrodes.,” Ann. Oto-Laryngol. Chir. Cervico Faciale Bull. Soc. Oto-Laryngol. Hopitaux Paris, vol. 92, no. 1–2, pp. 17–23, 1975.
[9]E. F. Evans, “The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea,” Audiology, vol. 14, no. 5–6, pp. 419–442, Jan. 1975.
[10]B. Townshend, N. Cotter, D. Van Compernolle, and R. L. White, “Pitch perception by cochlear implant subjects,” J. Acoust. Soc. Am., vol. 82, no. 1, pp. 106–115, Jul. 1987.
[11]P. J. Blamey and G. M. Clark, “Place coding of vowel formants for cochlear implant patients,” J. Acoust. Soc. Am., vol. 88, no. 2, pp. 667–673, Aug. 1990.
[12]K. L. Horn, N. B. McMahon, D. C. Mcmahon, J. S. Lewis, M. Barker, and S. Gherini, “Functional use of the nucleus® 22-channel cochlear implant in the elderly,” The Laryngoscope, vol. 101, no. 3, pp. 284–288, Mar. 1991.
[13]J. J. Galvin, Q.-J. Fu, and G. Nogaki, “Melodic contour identification by cochlear implant listeners,” Ear Hear., vol. 28, no. 3, pp. 302–319, Jun. 2007.
[14]M. Azadpour and C. M. McKay, “A psychophysical method for measuring spatial resolution in cochlear implants,” JARO J. Assoc. Res. Otolaryngol., vol. 13, no. 1, pp. 145–157, Feb. 2012.
[15]S. M. Brill et al., “Optimization of channel number and stimulation rate for the fast continuous interleaved sampling strategy in the COMBI 40+,” Am. J. Otol., vol. 18, no. 6 Suppl, pp. S104-106, Nov. 1997.
[16]Fishman Kim E., Shannon Robert V., and Slattery William H., “Speech recognition as a function of the number of electrodes used in the speak cochlear implant speech processor,” J. Speech Lang. Hear. Res., vol. 40, no. 5, pp. 1201–1215, Oct. 1997.
[17]E. Buss, L. J. Leibold, H. L. Porter, and J. H. Grose, “Speech recognition in one- and two-talker maskers in school-age children and adults: Development of perceptual masking and glimpsing,” J. Acoust. Soc. Am., vol. 141, no. 4, p. 2650, 2017.
[18]E. Buss, L. J. Leibold, and J. W. Hall, “Effect of response context and masker type on word recognition in school-age children and adults,” J. Acoust. Soc. Am., vol. 140, no. 2, pp. 968–977, Aug. 2016.
[19]J. Benichov, L. C. Cox, P. A. Tun, and A. Wingfield, “Word recognition within a linguistic context: effects of age, hearing acuity, verbal ability, and cognitive function,” Ear Hear., vol. 33, no. 2, pp. 250–256, Apr. 2012.
[20]R. H. Gifford et al., “The relationship between spectral modulation detection and speech recognition: Adult versus pediatric cochlear implant recipients,” Trends Hear., vol. 22, p. 2331216518771176, Jan. 2018.
[21]N. M. Amichetti, E. Atagi, Y. Y. Kong, and A. Wingfield, “Linguistic context versus semantic competition in word recognition by younger and older adults with cochlear implants.,” Ear Hear., vol. 39, no. 1, pp. 101–109, Feb. 2018.
[22]F. Zeng, “Challenges in improving cochlear implant performance and accessibility,” IEEE Trans. Biomed. Eng., vol. 64, no. 8, pp. 1662–1664, Aug. 2017.
[23]T.-C. Tsou and Y.-F. Chou, The feasibility study of electronic stimulating cochlear nerve outside the cochlear. National Taiwan University Master Thesis, 2014.
[24]K. Birmingham et al., “Bioelectronic medicines: A research roadmap,” Nat. Rev. Drug Discov., vol. 13, pp. 399–400, May 2014.
[25]K. Famm, B. Litt, K. J. Tracey, E. S. Boyden, and M. Slaoui, “Drug discovery: A jump-start for electroceuticals,” Nature, vol. 496, pp. 159–161, Apr. 2013.
[26]P. B. Osborne, “Stimulating bioelectronic medicine discovery for urological disorders,” Am. J. Physiol.-Ren. Physiol., vol. 313, no. 5, pp. F1133–F1135, Aug. 2017.
[27]A. E. Hadjinicolaou et al., “Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis,” Biomaterials, vol. 33, no. 24, pp. 5812–5820, Aug. 2012.
[28]E. Margalit et al., “Retinal prosthesis for the blind,” Surv. Ophthalmol., vol. 47, no. 4, pp. 335–356, Jul. 2002.
[29]J. D. Weiland, W. Liu, and M. S. Humayun, “Retinal prosthesis,” Annu Rev Biomed Eng, vol. 7, pp. 361–401, 2005.
[30]J.-P. Guyot, A. Sigrist, M. Pelizzone, G. C. Feigl, and M. I. Kos, “Eye movements in response to electrical stimulation of the lateral and superior ampullary nerves,” Ann. Otol. Rhinol. Laryngol., vol. 120, no. 2, pp. 81–87, Feb. 2011.
[31]N. S. Davidovics, G. Y. Fridman, B. Chiang, and C. C. D. Santina, “Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 1, pp. 84–94, Feb. 2011.
[32]S. C. Kabay, S. Kabay, M. Yucel, and H. Ozden, “Acute urodynamic effects of percutaneous posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with Parkinson’s disease,” Neurourol. Urodyn., vol. 28, no. 1, pp. 62–67, Jan. 2009.
[33]M. S. George and G. Aston-Jones, “Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS),” Neuropsychopharmacology, vol. 35, no. 1, pp. 301–316, Jan. 2010.
[34]R. Fuentes, P. Petersson, W. B. Siesser, M. G. Caron, and M. A. L. Nicolelis, “Spinal cord stimulation restores locomotion in animal models of Parkinson’s Disease,” Science, vol. 323, no. 5921, pp. 1578–1582, Mar. 2009.
[35]G. Clark, “Cochlear implant,” in Speech Processing in the Auditory System, S. Greenberg, W. A. Ainsworth, A. N. Popper, and R. R. Fay, Eds. New York, NY: Springer New York, 2004, pp. 422–462.
[36]A. Mudry and M. Mills, “The early history of the cochlear implant: A retrospective,” JAMA Otolaryngol. Neck Surg., vol. 139, no. 5, pp. 446–453, May 2013.
[37]A. Dhanasingh and C. Jolly, “An overview of cochlear implant electrode array designs,” Hear. Res., vol. 356, pp. 93–103, Dec. 2017.
[38]I. Mosnier et al., “Long-term cognitive prognosis of profoundly deaf older adults after hearing rehabilitation using cochlear implants,” J. Am. Geriatr. Soc., vol. 66, no. 8, pp. 1553–1561, 2018.
[39]Y. Lei, R. Sun, X. Zhang, X. Feng, and L. Jiang, “Oxygen-rich enzyme biosensor based on superhydrophobic electrode,” Adv. Mater., vol. 28, no. 7, pp. 1477–1481, 2016.
[40]R. Yuan, H. Li, X. Yin, J. Lu, and L. Zhang, “3D CuO nanosheet wrapped nanofilm grown on Cu foil for high-performance non-enzymatic glucose biosensor electrode,” Talanta, vol. 174, pp. 514–520, Nov. 2017.
[41]R. B. Rakhi, P. Nayak, C. Xia, and H. N. Alshareef, “Novel amperometric glucose biosensor based on MXene nanocomposite,” Sci. Rep., vol. 6, p. 36422, Nov. 2016.
[42]Y.-J. Wu et al., “Conformal deposition of Pt on titania nanotubes to produce a bio-electrode for neuro-stimulating applications,” Electrochem. Commun., vol. 88, pp. 61–66, Mar. 2018.
[43]N. N. Maslakci, F. D. Danas, and A. U. Oksuz, “QCM-DNA biosensor based on plasma modified PT/TiO2 nanocomposites,” J. Macromol. Sci. Part A, vol. 53, no. 5, pp. 311–316, May 2016.
[44]B. Ji et al., “Flexible bioelectrodes with enhanced wrinkle microstructures for reliable electrochemical modification and neuromodulation in vivo,” Biosens. Bioelectron., vol. 135, pp. 181–191, Jun. 2019.
[45]D. W. Kumsa, N. Bhadra, E. M. Hudak, S. C. Kelley, D. F. Untereker, and J. T. Mortimer, “Electron transfer processes occurring on platinum neural stimulating electrodes: a tutorial on thei(Ve) profile,” J. Neural Eng., vol. 13, no. 5, p. 052001, Aug. 2016.
[46]E. M. Hudak, D. W. Kumsa, H. B. Martin, and J. T. Mortimer, “Electron transfer processes occurring on platinum neural stimulating electrodes: calculated charge-storage capacities are inaccessible during applied stimulation,” J. Neural Eng., vol. 14, no. 4, p. 046012, May 2017.
[47]D. W. Kumsa, E. M. Hudak, N. Bhadra, and J. T. Mortimer, “Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-imbalanced, biphasic pulses for 0.566 ⩽ k ⩽ 2.3 in rat subcutaneous tissues,” J. Neural Eng., vol. 16, no. 2, p. 026018, Apr. 2019.
[48]C.-Y. Chen et al., “A biocompatible needle-type glucose sensor based on platinum-electroplated carbon electrode,” Appl. Biochem. Biotechnol., vol. 36, no. 3, p. 211, Sep. 1992.
[49]S. Patra et al., “Design of metal organic framework–enzyme based bioelectrodes as a novel and highly sensitive biosensing platform,” J. Mater. Chem. B, vol. 3, no. 46, pp. 8983–8992, 2015.
[50]N. Nesakumar, S. Sethuraman, U. M. Krishnan, and J. B. B. Rayappan, “Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice,” Biosens. Bioelectron., vol. 77, pp. 1070–1077, Mar. 2016.
[51]S. P. Khan, G. G. Auner, O. Palyvoda, and G. M. Newaz, “Biocompatibility assessment of next generation materials for brain implantable microelectrodes,” Mater. Lett., vol. 65, no. 5, pp. 876–879, Mar. 2011.
[52]J. D. Weiland and D. J. Anderson, “Chronic neural stimulation with thin-film, iridium oxide electrodes,” IEEE Trans. Biomed. Eng., vol. 47, no. 7, pp. 911–918, Jul. 2000.
[53]S. Negi, R. Bhandari, L. Rieth, and F. Solzbacher, “In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays,” Biomed. Mater., vol. 5, no. 1, p. 015007, 2010.
[54]J. D. Weiland, D. J. Anderson, and M. S. Humayun, “In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes,” IEEE Trans. Biomed. Eng., vol. 49, no. 12, pp. 1574–1579, Dec. 2002.
[55]T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, and H. Takenaka, “IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells,” J. Appl. Electrochem., vol. 31, no. 11, pp. 1179–1183, Nov. 2001.
[56]Y. Zhang, C. Wang, N. Wan, and Z. Mao, “Deposited RuO2–IrO2/Pt electrocatalyst for the regenerative fuel cell,” Int. J. Hydrog. Energy, vol. 32, no. 3, pp. 400–404, Mar. 2007.
[57]G. Hong, “Auditory brainstem response.” [Online]. Available: http://www.ling.fju.edu.tw/hearing/brainhearing.htm. [Accessed: 30-May-2019].
[58]“Potenziali evocati acustici (ABR),” Montallegro. [Online]. Available: https://www.montallegro.it/servizi/otorinolaringoiatria/esami-strumentali/potenziali-evocati-acustici-abr/. [Accessed: 02-May-2019].
[59]K. P. Hunter and J. F. Willott, “Aging and the auditory brainstem response in mice with severe or minimal presbycusis,” Hear. Res., vol. 30, no. 2, pp. 207–218, Jan. 1987.
[60]X. Zhou, P. H.-S. Jen, K. L. Seburn, W. N. Frankel, and Q. Y. Zheng, “Auditory brainstem responses in 10 inbred strains of mice,” Brain Res., vol. 1091, no. 1, pp. 16–26, May 2006.
[61]B. Coomber, J. I. Berger, V. L. Kowalkowski, T. M. Shackleton, A. R. Palmer, and M. N. Wallace, “Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig,” Eur. J. Neurosci., vol. 40, no. 2, pp. 2427–2441, Jul. 2014.
[62]Y. Klein, O. Fleissig, A. Stabholz, S. Chaushu, and D. Polak, “Bone regeneration with bovine bone impairs orthodontic tooth movement despite proper osseous wound healing in a novel mouse model,” J. Periodontol., vol. 90, no. 2, pp. 189–199, 2019.
[63]R. Amanipour, S. Cresoe, C. Borlongan, R. Frisina, and J. Walton, “Effects of mild traumatic brain injury on auditory function in a mouse model,” in 2016 32nd Southern Biomedical Engineering Conference (SBEC), 2016, pp. 13–14.
[64]N. Vallecillo, M. A. Pajares, S. H. Zeisel, L. Rodriguez-de la Rosa, and I. Varela-Nieto, “Expression and regulation of the methionine cycle genes in the mouse cochlea,” presented at the Congreso de la SEBBM, 2016.
[65]O. Akil, A. E. Oursler, K. Fan, and L. R. Lustig, “Mouse auditory brainstem response testing,” Bio-Protoc., vol. 6, no. 6, Mar. 2016.
[66]A. Radeloff, A. Becker, J. Stumper, S. Gürtler, K. Bomke, and K. Radeloff, “Significance of ABR in newborn hearing screening for detection of children with auditory neuropathy spectrum disorders,” in Laryngo-Rhino-Otologie, 2018, vol. 97, p. 10694.
[67]A. K. Paul, “Centralized newborn hearing screening in Ernakulam, Kerala–Experience over a decade,” Indian Pediatr., vol. 53, no. 1, pp. 15–17, Jan. 2016.
[68]Yoonjae Song, Mun Young Chang, Min Young Lee, Eun Young Lee, Sun O. Chang, and Jun Ho Lee, “Development of novel criteria models for the prediction of acoustic tumor using click and chirp-evoked ABR,” J. Hear. Sci., vol. 7, no. 2, pp. 60–60, May 2017.
[69]M. Don, B. Kwong, C. Tanaka, D. Brackmann, and R. Nelson, “The stacked ABR: A sensitive and specific screening tool for detecting small acoustic tumors,” Audiol. Neurotol., vol. 10, no. 5, pp. 274–290, 2005.
[70]N. M. Fernández, C. de Paula Vernetta, L. C. Garrido, M. D. Gómez, and C. M. Pérez, “Electrically evoked auditory brainstem response over round window by bipolar stimulation,” J. Int. Adv. Otol., vol. 14, no. 3, pp. 370–374, Dec. 2018.
[71]P. R. Kileny and J. L. Kemink, “Electrically evoked middle-latency auditory potentials in cochlear implant candidates,” Arch. Otolaryngol. Neck Surg., vol. 113, no. 10, pp. 1072–1077, Oct. 1987.
[72]N. M. Said Abdelsalam and P. O. Afifi, “Electric auditory brainstem response (E-ABR) in cochlear implant children: Effect of age at implantation and duration of implant use,” Egypt. J. Ear Nose Throat Allied Sci., vol. 16, no. 2, pp. 145–150, Jul. 2015.
[73]D. Polterauer, J. Müller, G. Mandruzzato, M. Neuling, M. Polak, and J.-M. Hempel, “Feasibility of promontory stimulation eABR recording in cochlear implant candidates with MED-EL clinical system: an update,” J. Hear. Sci., vol. 8, no. 2, pp. 164–164, Jun. 2018.
[74]“Laminin-coated electrodes improve cochlear implant function and post-insertion neuronal survival - ScienceDirect.” [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306452219303045. [Accessed: 16-May-2019].
[75]“Hearingtune Professional Services Ltd.” [Online]. Available: http://hearingtune.com/index.php?route=information/information&information_id=8. [Accessed: 25-Feb-2019].
[76]“What part of the ear contains the sensory receptors for hearing? | Socratic,” Socratic.org. [Online]. Available: https://socratic.org/questions/what-part-of-the-ear-contains-the-sensory-receptors-for-hearing. [Accessed: 27-Feb-2019].
[77]“Sensorineural Hearing Loss (SNHL): Sensorine,” BSR Hearing Aids and Speech Therapy Clinic 08039117274. [Online]. Available: http://www.hearingaidspeechclinic.com/latest-update/sensorineural-hearin/32. [Accessed: 27-Feb-2019].
[78]“Human ear - Transmission of sound within the inner ear,” Encyclopedia Britannica. [Online]. Available: https://www.britannica.com/science/ear. [Accessed: 05-Mar-2019].
[79]“Volley theory,” Wikipedia. 14-Dec-2018.
[80]J. Naturale, “InfoGuides: Deaf technologies: Amplification technologies.” [Online]. Available: //infoguides.rit.edu/c.php?g=460666&p=3202513. [Accessed: 11-Mar-2019].
[81]K. Arora, “Cochlear implant simulation rates and speech perception,” in Modern Speech Recognition Approaches with Case Studies, S. Ramakrishnan, Ed. InTech, 2012.
[82]Z. Zhu, Q. Tang, F.-G. Zeng, T. Guan, and D. Ye, “Cochlear implant spatial selectivity with monopolar, bipolar and tripolar stimulation,” Hear. Res., vol. 283, no. 1–2, pp. 45–58, Jan. 2012.
[83]C. Arnoldner et al., “The intensity–Pitch relation revisited: Monopolar versus bipolar cochlear stimulation:,” The Laryngoscope, vol. 118, no. 9, pp. 1630–1636, Sep. 2008.
[84]R. P. Carlyon, J. M. Deeks, J. Undurraga, O. Macherey, and A. van Wieringen, “Spatial selectivity in cochlear implants: Effects of asymmetric waveforms and development of a single-point measure,” J. Assoc. Res. Otolaryngol., vol. 18, no. 5, pp. 711–727, Oct. 2017.
[85]C. A. Fielden, K. Kluk, P. J. Boyle, and C. M. McKay, “The perception of complex pitch in cochlear implants: A comparison of monopolar and tripolar stimulation,” J. Acoust. Soc. Am., vol. 138, no. 4, pp. 2524–2536, Oct. 2015.
[86]D. A. Chari, P. Jiradejvong, and C. J. Limb, “Tripolar stimulation improves polyphonic pitch detection in cochlear implant users,” Otol. Neurotol., vol. 40, no. 1, pp. 38–46, Jan. 2019.
[87]C.-F. Lee, P.-R. Chen, W.-J. Lee, Y.-F. Chou, J.-H. Chen, and T.-C. Liu, “Computer aided modeling of human mastoid cavity biomechanics using finite element analysis,” EURASIP J. Adv. Signal Process., vol. 2010, no. 1, p. 203037, Aug. 2009.
[88]Chia-Fone Lee et al., “Effects of optimal electrodes on bone-guided extracochlear implants for electrically stimulating auditory nerve in guinea pig,” Journal of Neural Engineering, [Submitted].
[89]C. van den Honert and P. H. Stypulkowski, “Characterization of the electrically evoked auditory brainstem response (ABR) in cats and humans,” Hear. Res., vol. 21, no. 2, pp. 109–126, Jan. 1986.
[90]X. Qian et al., “Design and in-vivo verification of a CMOS bone-guided cochlear implant microsystem,” IEEE Trans. Biomed. Eng., pp. 1–1, 2019.
[91]D.-W. Park et al., “Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in GCaMP6f mice,” ACS Nano, vol. 12, no. 1, pp. 148–157, Jan. 2018.
[92]H. C. Pillsbury et al., “Multicenter US clinical trial with an electric-acoustic stimulation (EAS) system in adults: Final outcomes,” Otol. Neurotol., vol. 39, no. 3, pp. 299–305, Mar. 2018.
[93]M. Sato, P. Baumhoff, J. Tillein, and A. Kral, “Physiological mechanisms in combined electric–Acoustic stimulation:,” Otol. Neurotol., vol. 38, no. 8, pp. e215–e223, Sep. 2017.
[94]J. Kiefer et al., “Combined electric and acoustic stimulation of the auditory system: Results of a clinical study,” Audiol. Neurotol., vol. 10, no. 3, pp. 134–144, 2005.
[95]C. W. Turner, L. A. J. Reiss, and B. J. Gantz, “Combined acoustic and electric hearing: Preserving residual acoustic hearing,” Hear. Res., vol. 242, no. 1–2, pp. 164–171, Aug. 2008.
[96]B. J. Gantz, C. C. Dunn, J. Oleson, and M. R. Hansen, “Acoustic plus electric speech processing: Long-term results: A+E: long-term Results,” The Laryngoscope, vol. 128, no. 2, pp. 473–481, Feb. 2018.
[97]“EAS hearing implants | hearLIFE.” [Online]. Available: https://www.hearlifeclinic.com/ca/show/index/id/86/title/EAS-HEARING-IMPLANTS. [Accessed: 31-May-2019].
[98]H. Yi, W. Guo, W. Chen, L. Chen, J. Ye, and S. Yang, “Miniature pigs: a large animal model of cochlear implantation,” Am. J. Transl. Res., vol. 8, no. 12, pp. 5494–5502, Dec. 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔