|
[1]S. Nukiyama, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure, J. Soc. Mech. Eng. 37 (1934) 367–374. doi:10.1299/jsmemagazine.37.206_367. [2]J. Kim, S. Jun, R. Laksnarain, S.M. You, Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability, Int. J. Heat Mass Transf. 101 (2016) 992–1002. doi:10.1016/j.ijheatmasstransfer.2016.05.067. [3]J.S. Kim, A. Girard, S. Jun, J. Lee, S.M. You, Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces, Int. J. Heat Mass Transf. 118 (2018) 802–811. doi:10.1016/j.ijheatmasstransfer.2017.10.124. [4]J.M.S. Jabardo, G. Ribatski, E. Stelute, Roughness and surface material effects on nucleate boiling heat transfer from cylindrical surfaces to refrigerants R-134a and R-123, Exp. Therm. Fluid Sci. 33 (2009) 579–590. doi:10.1016/j.expthermflusci.2008.12.004. [5]R. Hosseini, A. Gholaminejad, H. Jahandar, Roughness effects on nucleate pool boiling of R-113 on horizontal circular copper surfaces, World Acad. Sci. Eng. Technol. (2011). [6]M.S. El-Genk, A. Suszko, Saturation and subcooled chf correlations for PF-5060 dielectric liquid on inclined rough copper surfaces, Multiph. Sci. Technol. 26 (2) (2014) 139–170. doi:10.1615/multscientechn.v26.i2.20. [7]T.P. Allred, J.A. Weibel, S. V. Garimella, Enabling highly effective boiling from superhydrophobic surfaces, Phys. Rev. Lett. 120 (2018) 174501. doi:10.1103/physrevlett.120.174501. [8]T.P. Allred, J.A. Weibel, S. V. Garimella, The petal effect of parahydrophobic surfaces offers low receding contact angles that promote effective boiling, Int. J. Heat Mass Transf. 135 (2019) 403–412. doi:10.1016/j.ijheatmasstransfer.2019.02.002. [9]C.S. Sujith Kumar, Y.W. Chang, P.H. Chen, Effect of heterogeneous wettable structures on pool boiling performance of cylindrical copper surfaces, Appl. Therm. Eng. (2017). doi:10.1016/j.applthermaleng.2017.08.069. [10]M. Dharmendra, S. Suresh, C.S. Sujith Kumar, Q. Yang, Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate, Appl. Therm. Eng. 99 (2016) 61–71. doi:10.1016/j.applthermaleng.2015.12.081. [11]Z. Kang, L. Wang, Boiling heat transfer on surfaces with 3D-printing microstructures, Exp. Therm. Fluid Sci. 93 (2018) 165–170. doi:10.1016/j.expthermflusci.2017.12.021. [12]S. C. S., Y. Chang, M. Arenales, L.-S. Kuo, Y. Chuang, P.-H. Chen, Experimental investigation on the effect of size and pitch of hydrophobic square patterns on the pool boiling heat transfer performance of cylindrical copper surface, Inventions. 3 (2018) 15. doi:10.3390/inventions3010015. [13]C.-C. Hsu, M.-R. Lee, C.-H. Wu, P.-H. Chen, Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling, Appl. Therm. Eng. 112 (2017) 1187–1194. doi:10.1016/j.applthermaleng.2016.10.176. [14]C.-C. Hsu, P.-H. Chen, Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings, Int. J. Heat Mass Transf. 55 (2012) 3713–3719. doi:10.1016/j.ijheatmasstransfer.2012.03.003. [15]H. Jo, H.S. Ahn, S. Kang, M.H. Kim, A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces, Int. J. Heat Mass Transf. 54 (2011) 5643–5652. doi:10.1016/j.ijheatmasstransfer.2011.06.001. [16]C.S. Sujith Kumar, G. Udaya Kumar, M.R. Mata Arenales, C.-C. Hsu, S. Suresh, P.-H. Chen, Elucidating the mechanisms behind the boiling heat transfer enhancement using nano-structured surface coatings, Appl. Therm. Eng. 137 (2018) 868–891. doi:10.1016/j.applthermaleng.2018.03.092. [17]G. Liang, I. Mudawar, Review of pool boiling enhancement by surface modification, Int. J. Heat Mass Transf. 128 (2019) 892–933. doi:10.1016/j.ijheatmasstransfer.2018.09.026. [18]J.S. Mehta, S.G. Kandlikar, Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results for circumferential rectangular open microchannels, Int. J. Heat Mass Transf. 64 (2013) 1205–1215. doi:10.1016/j.ijheatmasstransfer.2013.03.087. [19]J.S. Mehta, S.G. Kandlikar, Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part II: Experimental results and bubble dynamics for circumferential v-groove and axial rectangular open microchannels, Int. J. Heat Mass Transf. 64 (2013) 1216–1225. doi:10.1016/j.ijheatmasstransfer.2013.04.004. [20]H.J. Cho, J.P. Mizerak, E.N. Wang, Turning bubbles on and off during boiling using charged surfactants, Nat. Commun. 6 (2015) 8599. Https://doi.org/10.1038/ncomms9599. [21]M.R. Pearson, J. Seyed-Yagoobi, EHD conduction-driven enhancement of critical heat flux in pool boiling, Ieee Trans. Ind. Appl. 49 (2013) 1808–1816. doi:10.1109/tia.2013.2262451. [22]I. Kano, Y. Takahashi, Effect of electric field generated by microsized electrode on pool boiling, IEEE Trans. Ind. Appl. 49 (2013) 2382–2387. doi:10.1109/tia.2013.2263213. [23]A. Sur, Y. Lu, C. Pascente, P. Ruchhoeft, D. Liu, Pool boiling heat transfer enhancement with electrowetting, Int. J. Heat Mass Transf. 120 (2018) 202–217. doi:10.1016/j.ijheatmasstransfer.2017.12.029. [24]A. Dinesh, A. Sathyabhama, Effect of compound enhancement technique on pool boiling heat transfer coefficient, Heat Pipe Sci. Technol. An Int. J. 7 (2016) 251–264. doi:10.1615/heatpipescietech.2017019384. [25]A. Sathyabhama, A. Dinesh, Augmentation of heat transfer coefficient in pool boiling using compound enhancement techniques, Appl. Therm. Eng. 119 (2017) 176–188. doi:10.1016/j.applthermaleng.2017.03.029. [26]S.-K. Lee, H.-C. Hsu, W.-H. Tuan, S.-K. Lee, H.-C. Hsu, W.-H. Tuan, Oxidation behavior of copper at a temperature below 300 °C and the methodology for passivation, Mater. Res. 19 (2016) 51–56. doi:10.1590/1980-5373-mr-2015-0139. [27]Y. Nam, Y.S. Ju, Comparative study of copper oxidation schemes and their effects on surface wettability, In: Vol. 10 Heat Transf. Fluid Flows, Therm. Syst. Parts A, B, C, Asme, 2008: Pp. 1833–1838. doi:10.1115/imece2008-67492. [28]P.R. Dominiczak, J.T. Cieśliński, Circumferential temperature distribution during nucleate pool boiling outside smooth and modified horizontal tubes, Exp. Therm. Fluid Sci. 33 (2008) 173–177. doi:10.1016/j.expthermflusci.2008.07.007.
|