(54.236.58.220) 您好!臺灣時間:2021/02/27 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬理歐
研究生(外文):Mario Roberto Mata Arenales
論文名稱:不同表面粗糙度於紅銅圓管對水的池沸騰之影響
論文名稱(外文):Effects of Varying the Surface Roughness on Copper Tubes in Pool Boiling of Water
指導教授:陳炳煇陳炳煇引用關係
指導教授(外文):Ping-Hei Chen
口試委員:潘國隆張天立
口試委員(外文):Kuo-Long PanTien-Li Chang
口試日期:2019-06-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:101
中文關鍵詞:surface roughnesshydrophobic patternscreen printingwall superheatboiling heat transfer coefficientcritical heat fluxheterogeneous wettable surface
DOI:10.6342/NTU201900716
相關次數:
  • 被引用被引用:0
  • 點閱點閱:37
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Results showing the effect of pool boiling on the surface roughness of copper tubes using deionized water as the working fluid are presented in this paper. To obtain different surface roughness values of each sample, the copper tubes were rotated with an electric rotor and sanded using sandpapers with different grits. The average surface roughness values of the plain copper tubes were in the range 0.032–0.544 µm. All experimental samples were horizontally oriented, and experiments were carried out in ambient conditions up to a moderate heat flux regime (~ 450 kW/m2). Moreover, for a comparative analysis, a sample with a rough surface and hydrophobic patterns was included in this study. Compared with the smoothest surface, the aforementioned rough sample exhibited a heat transfer coefficient that was up to a factor 1.5 higher for the highest evaluated heat flux. These findings show that even small increments in the surface roughness along with the addition of hydrophobic patterns can significantly lower the wall superheat temperature and increase the heat transfer coefficient of copper tubes. Furthermore, supported by high-speed imaging of the experiment, it was observed that increasing the surface roughness caused bubbles to depart when their diameter was larger, and the nucleation site density and bubble departure frequency increased. In contrast, the rough surface with hydrophobic patterns exhibited the best overall enhancement, including the characteristics mentioned above of the rough surfaces along with a uniform distribution of the bubbles around the surface.
Results showing the effect of pool boiling on the surface roughness of copper tubes using deionized water as the working fluid are presented in this paper. To obtain different surface roughness values of each sample, the copper tubes were rotated with an electric rotor and sanded using sandpapers with different grits. The average surface roughness values of the plain copper tubes were in the range 0.032–0.544 µm. All experimental samples were horizontally oriented, and experiments were carried out in ambient conditions up to a moderate heat flux regime (~ 450 kW/m2). Moreover, for a comparative analysis, a sample with a rough surface and hydrophobic patterns was included in this study. Compared with the smoothest surface, the aforementioned rough sample exhibited a heat transfer coefficient that was up to a factor 1.5 higher for the highest evaluated heat flux. These findings show that even small increments in the surface roughness along with the addition of hydrophobic patterns can significantly lower the wall superheat temperature and increase the heat transfer coefficient of copper tubes. Furthermore, supported by high-speed imaging of the experiment, it was observed that increasing the surface roughness caused bubbles to depart when their diameter was larger, and the nucleation site density and bubble departure frequency increased. In contrast, the rough surface with hydrophobic patterns exhibited the best overall enhancement, including the characteristics mentioned above of the rough surfaces along with a uniform distribution of the bubbles around the surface.
Master thesis certification by oral defense committee i
Dedication ii
Acknowledgements iii
Abstract iv
Table of Contents v
List of figures vii
List of tables xi
Nomenclature xii
Abbreviations xiii
1. INTRODUCTION 1
1.1. Background 1
1.2. Pool boiling curve 2
1.2.1. Natural convection boiling 3
1.2.2. Nucleate boiling 4
1.2.3. Transition boiling 4
1.2.4. Film boiling 5
1.3. Thesis structure 5
2. LITERATURE REVIEW 6
2.1. Passive techniques 6
2.1.1. Surface roughness 6
2.1.2. Coating materials 9
2.1.3. Microchannel surfaces 13
2.2. Active techniques 14
2.3. Combination techniques 16
2.4. Comments in the literature review 17
2.5. Objectives 18
3. EXPERIMENTAL APPROACH 19
3.1. Experimental setup 19
3.2. Surface preparation procedures 23
3.3. Preparation of the polymer mixture 26
3.4. Surface characterization of the experimental samples 27
3.5. Data reduction 31
3.6. Uncertainty analysis 33
3.7. Experimental procedures 35
4. RESULTS AND DISCUSSION 40
4.1. Surface wettability behavior 41
4.2. Wall superheat and heat transfer coefficient enhancement 42
4.3. Circumferential surface temperature difference 46
4.4. Visual representation of the bubble dynamics 50
5. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 55
5.1. Conclusions 55
5.2. Suggestions for future research 56
References 58
Appendices 63
[1]S. Nukiyama, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure, J. Soc. Mech. Eng. 37 (1934) 367–374. doi:10.1299/jsmemagazine.37.206_367.
[2]J. Kim, S. Jun, R. Laksnarain, S.M. You, Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability, Int. J. Heat Mass Transf. 101 (2016) 992–1002. doi:10.1016/j.ijheatmasstransfer.2016.05.067.
[3]J.S. Kim, A. Girard, S. Jun, J. Lee, S.M. You, Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces, Int. J. Heat Mass Transf. 118 (2018) 802–811. doi:10.1016/j.ijheatmasstransfer.2017.10.124.
[4]J.M.S. Jabardo, G. Ribatski, E. Stelute, Roughness and surface material effects on nucleate boiling heat transfer from cylindrical surfaces to refrigerants R-134a and R-123, Exp. Therm. Fluid Sci. 33 (2009) 579–590. doi:10.1016/j.expthermflusci.2008.12.004.
[5]R. Hosseini, A. Gholaminejad, H. Jahandar, Roughness effects on nucleate pool boiling of R-113 on horizontal circular copper surfaces, World Acad. Sci. Eng. Technol. (2011).
[6]M.S. El-Genk, A. Suszko, Saturation and subcooled chf correlations for PF-5060 dielectric liquid on inclined rough copper surfaces, Multiph. Sci. Technol. 26 (2) (2014) 139–170. doi:10.1615/multscientechn.v26.i2.20.
[7]T.P. Allred, J.A. Weibel, S. V. Garimella, Enabling highly effective boiling from superhydrophobic surfaces, Phys. Rev. Lett. 120 (2018) 174501. doi:10.1103/physrevlett.120.174501.
[8]T.P. Allred, J.A. Weibel, S. V. Garimella, The petal effect of parahydrophobic surfaces offers low receding contact angles that promote effective boiling, Int. J. Heat Mass Transf. 135 (2019) 403–412. doi:10.1016/j.ijheatmasstransfer.2019.02.002.
[9]C.S. Sujith Kumar, Y.W. Chang, P.H. Chen, Effect of heterogeneous wettable structures on pool boiling performance of cylindrical copper surfaces, Appl. Therm. Eng. (2017). doi:10.1016/j.applthermaleng.2017.08.069.
[10]M. Dharmendra, S. Suresh, C.S. Sujith Kumar, Q. Yang, Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate, Appl. Therm. Eng. 99 (2016) 61–71. doi:10.1016/j.applthermaleng.2015.12.081.
[11]Z. Kang, L. Wang, Boiling heat transfer on surfaces with 3D-printing microstructures, Exp. Therm. Fluid Sci. 93 (2018) 165–170. doi:10.1016/j.expthermflusci.2017.12.021.
[12]S. C. S., Y. Chang, M. Arenales, L.-S. Kuo, Y. Chuang, P.-H. Chen, Experimental investigation on the effect of size and pitch of hydrophobic square patterns on the pool boiling heat transfer performance of cylindrical copper surface, Inventions. 3 (2018) 15. doi:10.3390/inventions3010015.
[13]C.-C. Hsu, M.-R. Lee, C.-H. Wu, P.-H. Chen, Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling, Appl. Therm. Eng. 112 (2017) 1187–1194. doi:10.1016/j.applthermaleng.2016.10.176.
[14]C.-C. Hsu, P.-H. Chen, Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings, Int. J. Heat Mass Transf. 55 (2012) 3713–3719. doi:10.1016/j.ijheatmasstransfer.2012.03.003.
[15]H. Jo, H.S. Ahn, S. Kang, M.H. Kim, A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces, Int. J. Heat Mass Transf. 54 (2011) 5643–5652. doi:10.1016/j.ijheatmasstransfer.2011.06.001.
[16]C.S. Sujith Kumar, G. Udaya Kumar, M.R. Mata Arenales, C.-C. Hsu, S. Suresh, P.-H. Chen, Elucidating the mechanisms behind the boiling heat transfer enhancement using nano-structured surface coatings, Appl. Therm. Eng. 137 (2018) 868–891. doi:10.1016/j.applthermaleng.2018.03.092.
[17]G. Liang, I. Mudawar, Review of pool boiling enhancement by surface modification, Int. J. Heat Mass Transf. 128 (2019) 892–933. doi:10.1016/j.ijheatmasstransfer.2018.09.026.
[18]J.S. Mehta, S.G. Kandlikar, Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results for circumferential rectangular open microchannels, Int. J. Heat Mass Transf. 64 (2013) 1205–1215. doi:10.1016/j.ijheatmasstransfer.2013.03.087.
[19]J.S. Mehta, S.G. Kandlikar, Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part II: Experimental results and bubble dynamics for circumferential v-groove and axial rectangular open microchannels, Int. J. Heat Mass Transf. 64 (2013) 1216–1225. doi:10.1016/j.ijheatmasstransfer.2013.04.004.
[20]H.J. Cho, J.P. Mizerak, E.N. Wang, Turning bubbles on and off during boiling using charged surfactants, Nat. Commun. 6 (2015) 8599. Https://doi.org/10.1038/ncomms9599.
[21]M.R. Pearson, J. Seyed-Yagoobi, EHD conduction-driven enhancement of critical heat flux in pool boiling, Ieee Trans. Ind. Appl. 49 (2013) 1808–1816. doi:10.1109/tia.2013.2262451.
[22]I. Kano, Y. Takahashi, Effect of electric field generated by microsized electrode on pool boiling, IEEE Trans. Ind. Appl. 49 (2013) 2382–2387. doi:10.1109/tia.2013.2263213.
[23]A. Sur, Y. Lu, C. Pascente, P. Ruchhoeft, D. Liu, Pool boiling heat transfer enhancement with electrowetting, Int. J. Heat Mass Transf. 120 (2018) 202–217. doi:10.1016/j.ijheatmasstransfer.2017.12.029.
[24]A. Dinesh, A. Sathyabhama, Effect of compound enhancement technique on pool boiling heat transfer coefficient, Heat Pipe Sci. Technol. An Int. J. 7 (2016) 251–264. doi:10.1615/heatpipescietech.2017019384.
[25]A. Sathyabhama, A. Dinesh, Augmentation of heat transfer coefficient in pool boiling using compound enhancement techniques, Appl. Therm. Eng. 119 (2017) 176–188. doi:10.1016/j.applthermaleng.2017.03.029.
[26]S.-K. Lee, H.-C. Hsu, W.-H. Tuan, S.-K. Lee, H.-C. Hsu, W.-H. Tuan, Oxidation behavior of copper at a temperature below 300 °C and the methodology for passivation, Mater. Res. 19 (2016) 51–56. doi:10.1590/1980-5373-mr-2015-0139.
[27]Y. Nam, Y.S. Ju, Comparative study of copper oxidation schemes and their effects on surface wettability, In: Vol. 10 Heat Transf. Fluid Flows, Therm. Syst. Parts A, B, C, Asme, 2008: Pp. 1833–1838. doi:10.1115/imece2008-67492.
[28]P.R. Dominiczak, J.T. Cieśliński, Circumferential temperature distribution during nucleate pool boiling outside smooth and modified horizontal tubes, Exp. Therm. Fluid Sci. 33 (2008) 173–177. doi:10.1016/j.expthermflusci.2008.07.007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔