(54.236.58.220) 您好!臺灣時間:2021/03/01 00:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳政璋
研究生(外文):Cheng-Chang Wu
論文名稱:摩擦式奈米元件內摩擦介電層的厚度與元件效能的關係與探討
論文名稱(外文):Exploring the Relationship between the Thickness of the Tribo-dielectric Layer and Efficiency of a Triboelectric Nanogenerator
指導教授:廖洺漢
口試委員:李敏鴻張書通
口試日期:2019-05-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:75
中文關鍵詞:奈米發電機摩擦式奈米發電機聚二甲基矽氧烷摩擦介電層動態模型開路電壓短路電流
DOI:10.6342/NTU201900860
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著人類對能源的需求逐年增加,人們近年來不停地尋找各種替代能源,例如:太陽能、風能、潮汐能、地熱能和生質能。然而,即使有這些再生能源的出現與開發,仍無法成為現今人類消耗大量能量的主要來源。因此,一種藉由奈米科技用於儲存能量的新技術就被發展起來,那就是奈米發電機(nanogenerators)。奈米發電機中,最具有發展潛力的就是由喬治亞理工提出的摩擦式奈米發電機(triboelectric nanogenerators, Tengs),它自2012年興起,至今是個新興且熱門的研究領域。
為了增加摩擦式奈米元件的輸出功率,我們可以從許多不同的面向著手,像是可以從電極以及摩擦介電層(tribo-dielectric layer, TDL)加入微結構,或是改變微結構的形狀或尺寸,都可以增加元件的效能。而這篇論文探討的是:摩擦介電層的厚度與元件的開路電壓(open-circuit voltage)以及短路電流(short-circuit current)之間的關係。相較於傳統的靜態模型,當摩擦介電層的厚度極薄時,以動態模型更能符合元件的輸出結果,同時也引進了一個材料參數,那就是動態模型中,在摩擦介電層附近的電子電洞再結合的比率r。透過數學算式的推導,可得到短路電流與摩擦介電層的厚度d是有關的,而開路電壓卻是無關的。此外,可以發現在某個特定的厚度值(dmax)時,會有最佳的電流值(Imax),且隨著材料的r值增加,Imax會隨之減少而dmax卻隨之增加。
最後,透過實驗的方式驗證理論模型的正確性,不僅推測出以聚二甲基矽氧烷(PDMS)當作摩擦介電層的r值,也推測出其他國外實驗的r值。
As the human demand for energy has increased year by year, people are constantly looking for alternative energy sources such as solar energy, wind energy, tidal energy, geothermal energy, and biomass energy recently. However, even with the emergence and development of these renewable energy sources, it is still unable to become a large amount of energy consumed by humans today. Therefore, there is a new technique developed for harvesting the energy by nano-technique called nanogenerator. One of the potential nanogenerators is triboelectric nanogenerators (Tengs), which is proposed by Georgia Tech. and has emerged since 2012 and that is still an emerging and popular research area.
In order to improve the output performance of Tengs, we can try at different aspects. For example, building up microstructure in electrode and tribo-dielectric layer (TDL) or changing the shape or size of microstructure can both increase the efficiency of Tengs. This article talks about the relationship between the thickness of TDL and open-circuit voltage or short-circuit current of a teng. Compared with static model, the dynamic model is more suitable for the output of tengs with ultra-thin thickness of TDL and we introduce one material parameter, i.e. electron-hole recombination rate (r) near the TDL in our developed dynamic model. By mathematical method, it can be derived that short-circuit current is dependent with different thickness of TDL, but open-circuit voltage is not. Furthermore, it can be found that there is a maximum current (Imax) at certain value of thickness (dmax), and the larger value of r in the material results in the smaller value of Imax and the larger value of dmax.
Finally, the experimental data and the theoretical dynamic model agree very well with each other and find out the value of r not only for polydimethylsiloxane (PDMS) as TDL but also for other foreign experimental data.
國立臺灣大學碩(博)士學位論文切結書 Declaration of Originality i
口試委員審定書 ii
致謝 iii
中文摘要 iv
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 2
1.3 論文架構 5
第二章 文獻回顧與理論基礎 6
2.1 歷史發展 6
2.1.1 壓電效應的發現 6
2.1.2 壓電元件的出現 7
2.1.3 以摩擦電效應的方式製造奈米元件 8
2.2 摩擦式奈米元件運作原理 10
2.2.1 摩擦起電之原理 10
2.2.2 摩擦式奈米元件運作原理 14
2.3 國際發展現況 16
2.3.1 喬治亞理工 16
2.3.2 韓國KAIST團隊 20
2.3.3 清華大學 22
2.3.4 中興大學 23
2.3.5 台灣大學 24
2.4 研究目的 26
第三章 理論計算與分析 29
3.1 靜態模型的基礎 29
3.1.1 開路電壓的推導 30
3.1.2 短路電流的推導 31
3.2 動態模型的修正 33
3.3 參數“r”的物理意義 37
第四章 實驗方法與量測架設 38
4.1 實驗流程設計 38
4.2 電極製備 39
4.2.1 切片與震洗 40
4.2.2 電子槍蒸鍍系統鍍膜 41
4.2.3 光刻技術與剝離 45
4.3 PDMS製備 50
4.3.1 調配PDMS 51
4.3.2 塗佈與固化PDMS 52
4.3.3 建立PDMS薄膜資料系統 53
4.4 外部零件製備與元件組裝 55
4.5 元件量測 56
4.6 實驗預期結果 58
第五章 實驗結果與討論 59
5.1 開路電壓(Voc)量測結果 60
5.2 短路電流(Isc)量測結果 62
5.3 元件效能分析 65
第六章 總結 67
參考文獻 68
[1]Matiar M. R. Howlader and M. Jamal Deen , “Future nano- and micro-systems using nanobonding technologies”, AIP Conference Proceedings, Vol. 1590(1), Feb, 2015.
(https://arstechnica.com/information-technology/2017/03/intel-is-keeping-moores-law-alive-by-making-bigger-improvements-less-often/)
[2]Zhong Lin Wang, “Nanogenerators for self-powered devices and systems”, Georgia Institute of Technology, SMARTech digital repository, 2011.
[3]MEMS pressure sensor report 2013 Report by Yole Developpement
(https://www.slideshare.net/Yole_Developpement/yole-mems-pressuresensorapril2013sample, page 8)
[4]Yaping Zang, Fengjiao Zhang, Chong-an Di and Daoben Zhu, “Advances of flexible pressure sensors toward artificial intelligence and health care applications”, Materials Horizons, Vol. 2(2), pp. 133-254, March 2015.
[5]Zhong Lin Wang, “On Maxwell''s displacement current for energy and sensors: the origin of nanogenerators”, Materialstoday, Vol. 20(2), pp. 74-82, Mar. 2017.
[6]Zhong Lin Wang, “Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives”, Faraday Discussions, Vol.176, Sep. 2014.
[7]Junwen Zhong, Qize Zhong, Fengru Fan, Yan Zhang, Sihong Wang, Bin Hu, Zhong Lin Wang, Jun Zhou, “Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs”, Nano Energy, Vol. 2(4), pp. 491-497, July 2013.
[8]“New nanogenerator harvests power from rolling tires”, University of Wisconsin–Madison, June 29, 2015
(https://news.wisc.edu/new-nanogenerator-harvests-power-from-rolling-tires/)
[9]Jacques and Pierre Curie, “Développement par compression de l''électricité polaire dans les cristaux hémièdres à faces inclinées” (Development, via compression, of electric polarization in hemihedral crystals with inclined faces), Bulletin de la Société minérologique de France, Vol. 3, pp. 90-93, 1880.
[10]Jacques and Pierre Curie, “Contractions et dilatations produites par des tensions dans les cristaux hémièdres à faces inclinées” (Contractions and expansions produced by voltages in hemihedral crystals with inclined faces), Comptes rendus, Vol. 93, p. 1137-1140, 1881.
[11]Piezo Introduction by Unictron Technologies Corp.
(https://www.unictron.com/technology/piezo-introduction/)
[12]Zhong Lin Wang, Jinhui Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays”, Science, Vol. 312, pp. 242-246, 2006.
[13]Xudong Wang, Jinhui Song, Jin Liu, Zhong Lin Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves”, Science, Vol. 316, pp.102-105, 2007.
[14]Yong Qin, Xudong Wang & Zhong Lin Wang, “hybrid structure for energy scavenging”, Nature, Vol. 451, pp.809–813, Feb. 2008.
[15]Chi-Te Huang, Jinhui Song, Wei-Fan Lee, Yong Ding, Zhiyuan Gao, Yue Hao, Lih-Juann Chen, and Zhong Lin Wang, “GaN Nanowire Arrays for High-Output Nanogenerators”, Journal of the American Chemical Society, Vol. 132, pp. 4766–4771, April 7, 2010
[16]Yi-Feng Lin, Jinhui Song, Yong Ding, Shih-Yuan Lu, and Zhong Lin Wang, “Piezoelectric nanogenerator using CdS nanowires”, Applied Physics Letters,Vol. 92, p. 022105, Jan. 14, 2008.
[17]Zhaoyu Wang, Jie Hu, Abhijit P. Suryavanshi, Kyungsuk Yum, and Min-Feng Yu, “Voltage Generation from Individual BaTiO3 Nanowires under Periodic Tensile Mechanical Load”, Nano Letters, Vol. 132, pp. 4766-4771, October 2007.
[18]Chieh Chang, Van H. Tran, Junbo Wang, Yiin-Kuen Fuh, and Liwei Lin, “Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency”, University of California, Nano Letters, Vol. 10, pp. 726-731, Feb 10, 2010.
[19]Rajasekaran Ganeshkumar, Chin Wei Cheah, Ruize Xu, Sang-Gook Kim, and Rong Zhao, “A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers”, Applied Physics Letters, Vol. 111, p. 013905, July 2017.
[20]Nanogenerator, Wikipedia. (https://en.wikipedia.org/wiki/Nanogenerator)
[21]Feng-Ru Fana, Zhong-Qun Tian, Zhong Lin Wang, “Flexible triboelectric generator”, Nano Energy, Vol. 1, pp.328-334, 2012.
[22]Jun Peng, Stephen Dongmin Kang, G. Jeffrey Snyder, “Optimization principles and the figure of merit for triboelectric generators”, Science Advances, Vol. 3(12), p. eaap8576, Dec. 15, 2017.
[23]Devin Corbin, “A Natural History of My Static Electricity”, Jan. 20, 2010.
(https://owlsmag.wordpress.com/2010/01/20/a-natural-history-devin-corbin/)
[24]Johan Carl Wilcke, “Disputatio Physica Experimentalis, De Electricitatibus Contrariis.”, Typis Ioannis Iacobi Adleri, 1757.
[25]Zhong Lin Wang, “Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors”, ACS nano, Vol. 7(11), pp 9533–9557, Sep. 30, 2013.
[26]The Triboelectric Series, AlphaLab, inc.
(https://www.alphalabinc.com/triboelectric-series/)
[27]Feng-Ru Fan, Long Lin, Guang Zhu, Wenzhuo Wu, Rui Zhang, and Zhong Lin Wang, “Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films”, Nano Letters, Vol. 12, pp. 3109-3114, May 11, 2012.
[28]Guang Zhu, Caofeng Pan, Wenxi Guo, Chih-Yen Chen, Yusheng Zhou, Ruomeng Yu, and Zhong Lin Wang, “Triboelectric-generator-driven pulse electrodeposition for micropatterning.”, Nano Letters, Vol. 12, pp. 4960–4965, August 13, 2012.
[29]Sihong Wang, Long Lin, and Zhong Lin Wang, “Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics”, Nano Letters, Vol. 12, pp. 6339–6346, November 6, 2012.
[30]Simiao Niu, Sihong Wang, Long Lin, Ying Liu, Yu Sheng Zhou, Youfan Hu and Zhong Lin Wang, “Theoretical study of contact-mode triboelectric nanogenerators as an effective power source”, Energy & Environmental Science, Vol. 6, pp. 3576-3583, Sep. 2013.
[31]Nuanyang Cui, Long Gu, Yimin Lei, Jinmei Liu, Yong Qin, Xiaohua Ma, Yue Hao, and Zhong Lin Wang, “Dynamic Behavior of the Triboelectric Charges and Structural Optimization of the Friction Layer for a Triboelectric Nanogenerator”, ACS Nano, Vol. 10, pp. 6131–6138, April 29, 2016
[32]Chuan He, Zhong Lin Wang, “Triboelectric nanogenerator as a new technology for effective PM2.5 removing with zero ozone emission”, Progress in Natural Science: Materials International, Vol. 28(2), pp. 99-112, April 2018.
[33]Minyi Xu, Song Wang, Steven L. Zhang, Wenbo Ding, Phan Trung Kien, Chuan Wang, Zhou Li, Xinxiang Pan, Zhong Lin Wang, “A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment”, Nano Energy, Vol. 57, pp. 574-580, March 2019.
[34]Myeong‐Lok Seol, Jong‐Ho Woo, Dong‐Il Lee, Hwon Im, Jae Hur, Yang‐Kyu Choi, “Nature‐Replicated Nano‐in‐Micro Structures for Triboelectric Energy Harvesting”, Small, Volume10(19) , pp. 3887-3894, June 10, 2014.
[35]Myeong-Lok Seol, Sang-Han Lee, Jin-Woo Han, Daewon Kim, Gyu-Hyeong Cho, Yang-Kyu Choi, “Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures”, Nano Energy, Vol. 17, pp. 63-71, Oct. 2015.
[36]Daewon Kim, Byeong-Woon Hwang, Jin-Woo Han, Myeong-Lok Seol, Yura Oh, and Yang–Kyu Choi. “Output Enhancement of Triboelectric Energy Harvester by Micro-Porous Triboelectric Layer”, IEDM, pp. 18.7. 1-18.7. 4 , Dec. 2015.
[37]Daewon Kim, Weon-Guk Kim, Ik Kyeong Jin, Hongkeun Park, Moo Jin Kwak, Sung Gap Im, Yang-Kyu Choi, “Triboelectric energy harvester with an ultra-thin tribo-dielectric layer by initiated CVD and investigation of underlying physics in the triboelectricity”, IEDM, pp. 26.4.1-26.4.4, Dec. 2016.
[38]Jyh Ming Wu, Chih Kai Chang, Yu Ting Chang, “High-output current density of the triboelectric nanogenerator made from recycling rice husks”, Nano Energy, Vol. 19, pp. 39-47, January 2016.
[39]Advanced Devices Group, Ying-Chih Lai (https://lai423.wixsite.com/advdevice)
[40]Ying‐Chih Lai, Yung‐Chi Hsiao, Hsing‐Mei Wu, Zhong Lin Wang, “Waterproof Fabric‐Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self‐Powered Sensors”, Advanced Science, Vol. 6(5), Jan. 2019.
[41]Chih-Chieh Chuang, “Comprehensive Analysis of Interfacial Micro-Nano Structures in Triboelectric Layer of Triboelectric Energy Harvester”, Master''s thesis, Institute of Mechanical Engineering, National Taiwan University, 2016.
[42]Hong-Yi Huang, “Comprehensive Analysis of Interfacial Micro Dome Structure in Triboelectric Energy Harvester”, Master''s thesis, Institute of Mechanical Engineering, National Taiwan University, 2017.
[43]Ming-Han Liao, Hong-Yi Huang, Chih-Chieh Chuang, “Performance enhancement for the triboelectric energy harvester by using interfacial micro-dome array structures”, Applied Physics Letters, Vol. 110(15), p. 153901, Oct. 2017.
[44]Jiun-Yu Chen, “Comprehensive Analysis of Interfacial Micro-Nano Structures in Triboelectric Layer and Metal Layer of Triboelectric Energy Harvester”, Master''s thesis, Institute of Mechanical Engineering, National Taiwan University, 2018.
[45]Ummikalsom Abidin, Jumril Yunas, Burhanuddin Yeop Majlis, “Fabrication and testing of polydimethylsiloxane (PDMS) microchannel for lab-on-chip (LOC) magnetically-labelled biological cells separation”, pp. 73-80, Jurnal Teknologi, Vol. 78(8-4), 2016.
[46]John H. Koschwanez, Robert H. Carlson, Deirdre R. Meldrum, “Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent”, p. e4572, PLOS ONE, Vol. 4(2), Feb. 2009.
[47]Vaclav Smil, “Power Density Primer: Understanding the Spatial Dimension of the Unfolding Transition to Renewable Electricity Generation”, Master Resource, May 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔