|
[1]Matiar M. R. Howlader and M. Jamal Deen , “Future nano- and micro-systems using nanobonding technologies”, AIP Conference Proceedings, Vol. 1590(1), Feb, 2015. (https://arstechnica.com/information-technology/2017/03/intel-is-keeping-moores-law-alive-by-making-bigger-improvements-less-often/) [2]Zhong Lin Wang, “Nanogenerators for self-powered devices and systems”, Georgia Institute of Technology, SMARTech digital repository, 2011. [3]MEMS pressure sensor report 2013 Report by Yole Developpement (https://www.slideshare.net/Yole_Developpement/yole-mems-pressuresensorapril2013sample, page 8) [4]Yaping Zang, Fengjiao Zhang, Chong-an Di and Daoben Zhu, “Advances of flexible pressure sensors toward artificial intelligence and health care applications”, Materials Horizons, Vol. 2(2), pp. 133-254, March 2015. [5]Zhong Lin Wang, “On Maxwell''s displacement current for energy and sensors: the origin of nanogenerators”, Materialstoday, Vol. 20(2), pp. 74-82, Mar. 2017. [6]Zhong Lin Wang, “Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives”, Faraday Discussions, Vol.176, Sep. 2014. [7]Junwen Zhong, Qize Zhong, Fengru Fan, Yan Zhang, Sihong Wang, Bin Hu, Zhong Lin Wang, Jun Zhou, “Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs”, Nano Energy, Vol. 2(4), pp. 491-497, July 2013. [8]“New nanogenerator harvests power from rolling tires”, University of Wisconsin–Madison, June 29, 2015 (https://news.wisc.edu/new-nanogenerator-harvests-power-from-rolling-tires/) [9]Jacques and Pierre Curie, “Développement par compression de l''électricité polaire dans les cristaux hémièdres à faces inclinées” (Development, via compression, of electric polarization in hemihedral crystals with inclined faces), Bulletin de la Société minérologique de France, Vol. 3, pp. 90-93, 1880. [10]Jacques and Pierre Curie, “Contractions et dilatations produites par des tensions dans les cristaux hémièdres à faces inclinées” (Contractions and expansions produced by voltages in hemihedral crystals with inclined faces), Comptes rendus, Vol. 93, p. 1137-1140, 1881. [11]Piezo Introduction by Unictron Technologies Corp. (https://www.unictron.com/technology/piezo-introduction/) [12]Zhong Lin Wang, Jinhui Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays”, Science, Vol. 312, pp. 242-246, 2006. [13]Xudong Wang, Jinhui Song, Jin Liu, Zhong Lin Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves”, Science, Vol. 316, pp.102-105, 2007. [14]Yong Qin, Xudong Wang & Zhong Lin Wang, “hybrid structure for energy scavenging”, Nature, Vol. 451, pp.809–813, Feb. 2008. [15]Chi-Te Huang, Jinhui Song, Wei-Fan Lee, Yong Ding, Zhiyuan Gao, Yue Hao, Lih-Juann Chen, and Zhong Lin Wang, “GaN Nanowire Arrays for High-Output Nanogenerators”, Journal of the American Chemical Society, Vol. 132, pp. 4766–4771, April 7, 2010 [16]Yi-Feng Lin, Jinhui Song, Yong Ding, Shih-Yuan Lu, and Zhong Lin Wang, “Piezoelectric nanogenerator using CdS nanowires”, Applied Physics Letters,Vol. 92, p. 022105, Jan. 14, 2008. [17]Zhaoyu Wang, Jie Hu, Abhijit P. Suryavanshi, Kyungsuk Yum, and Min-Feng Yu, “Voltage Generation from Individual BaTiO3 Nanowires under Periodic Tensile Mechanical Load”, Nano Letters, Vol. 132, pp. 4766-4771, October 2007. [18]Chieh Chang, Van H. Tran, Junbo Wang, Yiin-Kuen Fuh, and Liwei Lin, “Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency”, University of California, Nano Letters, Vol. 10, pp. 726-731, Feb 10, 2010. [19]Rajasekaran Ganeshkumar, Chin Wei Cheah, Ruize Xu, Sang-Gook Kim, and Rong Zhao, “A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers”, Applied Physics Letters, Vol. 111, p. 013905, July 2017. [20]Nanogenerator, Wikipedia. (https://en.wikipedia.org/wiki/Nanogenerator) [21]Feng-Ru Fana, Zhong-Qun Tian, Zhong Lin Wang, “Flexible triboelectric generator”, Nano Energy, Vol. 1, pp.328-334, 2012. [22]Jun Peng, Stephen Dongmin Kang, G. Jeffrey Snyder, “Optimization principles and the figure of merit for triboelectric generators”, Science Advances, Vol. 3(12), p. eaap8576, Dec. 15, 2017. [23]Devin Corbin, “A Natural History of My Static Electricity”, Jan. 20, 2010. (https://owlsmag.wordpress.com/2010/01/20/a-natural-history-devin-corbin/) [24]Johan Carl Wilcke, “Disputatio Physica Experimentalis, De Electricitatibus Contrariis.”, Typis Ioannis Iacobi Adleri, 1757. [25]Zhong Lin Wang, “Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors”, ACS nano, Vol. 7(11), pp 9533–9557, Sep. 30, 2013. [26]The Triboelectric Series, AlphaLab, inc. (https://www.alphalabinc.com/triboelectric-series/) [27]Feng-Ru Fan, Long Lin, Guang Zhu, Wenzhuo Wu, Rui Zhang, and Zhong Lin Wang, “Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films”, Nano Letters, Vol. 12, pp. 3109-3114, May 11, 2012. [28]Guang Zhu, Caofeng Pan, Wenxi Guo, Chih-Yen Chen, Yusheng Zhou, Ruomeng Yu, and Zhong Lin Wang, “Triboelectric-generator-driven pulse electrodeposition for micropatterning.”, Nano Letters, Vol. 12, pp. 4960–4965, August 13, 2012. [29]Sihong Wang, Long Lin, and Zhong Lin Wang, “Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics”, Nano Letters, Vol. 12, pp. 6339–6346, November 6, 2012. [30]Simiao Niu, Sihong Wang, Long Lin, Ying Liu, Yu Sheng Zhou, Youfan Hu and Zhong Lin Wang, “Theoretical study of contact-mode triboelectric nanogenerators as an effective power source”, Energy & Environmental Science, Vol. 6, pp. 3576-3583, Sep. 2013. [31]Nuanyang Cui, Long Gu, Yimin Lei, Jinmei Liu, Yong Qin, Xiaohua Ma, Yue Hao, and Zhong Lin Wang, “Dynamic Behavior of the Triboelectric Charges and Structural Optimization of the Friction Layer for a Triboelectric Nanogenerator”, ACS Nano, Vol. 10, pp. 6131–6138, April 29, 2016 [32]Chuan He, Zhong Lin Wang, “Triboelectric nanogenerator as a new technology for effective PM2.5 removing with zero ozone emission”, Progress in Natural Science: Materials International, Vol. 28(2), pp. 99-112, April 2018. [33]Minyi Xu, Song Wang, Steven L. Zhang, Wenbo Ding, Phan Trung Kien, Chuan Wang, Zhou Li, Xinxiang Pan, Zhong Lin Wang, “A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment”, Nano Energy, Vol. 57, pp. 574-580, March 2019. [34]Myeong‐Lok Seol, Jong‐Ho Woo, Dong‐Il Lee, Hwon Im, Jae Hur, Yang‐Kyu Choi, “Nature‐Replicated Nano‐in‐Micro Structures for Triboelectric Energy Harvesting”, Small, Volume10(19) , pp. 3887-3894, June 10, 2014. [35]Myeong-Lok Seol, Sang-Han Lee, Jin-Woo Han, Daewon Kim, Gyu-Hyeong Cho, Yang-Kyu Choi, “Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures”, Nano Energy, Vol. 17, pp. 63-71, Oct. 2015. [36]Daewon Kim, Byeong-Woon Hwang, Jin-Woo Han, Myeong-Lok Seol, Yura Oh, and Yang–Kyu Choi. “Output Enhancement of Triboelectric Energy Harvester by Micro-Porous Triboelectric Layer”, IEDM, pp. 18.7. 1-18.7. 4 , Dec. 2015. [37]Daewon Kim, Weon-Guk Kim, Ik Kyeong Jin, Hongkeun Park, Moo Jin Kwak, Sung Gap Im, Yang-Kyu Choi, “Triboelectric energy harvester with an ultra-thin tribo-dielectric layer by initiated CVD and investigation of underlying physics in the triboelectricity”, IEDM, pp. 26.4.1-26.4.4, Dec. 2016. [38]Jyh Ming Wu, Chih Kai Chang, Yu Ting Chang, “High-output current density of the triboelectric nanogenerator made from recycling rice husks”, Nano Energy, Vol. 19, pp. 39-47, January 2016. [39]Advanced Devices Group, Ying-Chih Lai (https://lai423.wixsite.com/advdevice) [40]Ying‐Chih Lai, Yung‐Chi Hsiao, Hsing‐Mei Wu, Zhong Lin Wang, “Waterproof Fabric‐Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self‐Powered Sensors”, Advanced Science, Vol. 6(5), Jan. 2019. [41]Chih-Chieh Chuang, “Comprehensive Analysis of Interfacial Micro-Nano Structures in Triboelectric Layer of Triboelectric Energy Harvester”, Master''s thesis, Institute of Mechanical Engineering, National Taiwan University, 2016. [42]Hong-Yi Huang, “Comprehensive Analysis of Interfacial Micro Dome Structure in Triboelectric Energy Harvester”, Master''s thesis, Institute of Mechanical Engineering, National Taiwan University, 2017. [43]Ming-Han Liao, Hong-Yi Huang, Chih-Chieh Chuang, “Performance enhancement for the triboelectric energy harvester by using interfacial micro-dome array structures”, Applied Physics Letters, Vol. 110(15), p. 153901, Oct. 2017. [44]Jiun-Yu Chen, “Comprehensive Analysis of Interfacial Micro-Nano Structures in Triboelectric Layer and Metal Layer of Triboelectric Energy Harvester”, Master''s thesis, Institute of Mechanical Engineering, National Taiwan University, 2018. [45]Ummikalsom Abidin, Jumril Yunas, Burhanuddin Yeop Majlis, “Fabrication and testing of polydimethylsiloxane (PDMS) microchannel for lab-on-chip (LOC) magnetically-labelled biological cells separation”, pp. 73-80, Jurnal Teknologi, Vol. 78(8-4), 2016. [46]John H. Koschwanez, Robert H. Carlson, Deirdre R. Meldrum, “Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent”, p. e4572, PLOS ONE, Vol. 4(2), Feb. 2009. [47]Vaclav Smil, “Power Density Primer: Understanding the Spatial Dimension of the Unfolding Transition to Renewable Electricity Generation”, Master Resource, May 2010.
|