[1]J. F. Huggett, C. A. Foy, V. Benes, K. Emslie, J. A. Garson, R. Haynes, J. Hellemans, M. Kubista, R. D. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele, C. T. Wittwer and S. A. Bustin. “The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments.” Clin Chem., vol. 59, pp. 892-902, 2013.
[2]G. Lippmann. “Relations entre les phénomènes électriques et capillaires.” Annales de Chimie et de Physique, pp. 494-549, 1875.
[3]M. Gerovich and A. Frumkin. “Electrical Properties of Films of ω‐Bromo‐Hexadecanoic Acid.” J. Phys. Chem., vol. 4, pp. 624, 1936.
[4]G. Beni and S. Hackwood. “Electro-wetting displays.” Appl. Phys. Lett., Vol. 38, pp. 207-209, 1981.
[5]S. K. Cho, H. Moon, and C. J. Kim. “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits.” J. Microelectromech. Syst., vol. 12, pp. 70-80, 2003.
[6]K.F. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn and H. Erlich. “Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction.” cold spring harb symp quant biol, vol. 51, pp. 263–273, 1986.
[7]C. Zhang, D. Xing. “Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends.” Nucleic Acids Res., vol. 35, pp. 4223-
4237, 2007.
[8]M. U. Kopp, A. J. de Mello and A. Manz. “Chemical Amplification: Continuous-Flow PCR on a Chip.” sci., vol. 280, pp. 1046-1048, 1998.
[9]D. Moschou, N. Vourdas, G. Kokkoris, G. Papadakis, J. Parthenios, S. Chatzandroulis and A. Tserepi. “All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification.” Sens. Actuators. B, vol. 199, pp. 470-478, 2014.
[10]S. Li, D. Y. Fozdar, M. F. Ali, H. Li, D. Shao, D. M. Vykoukal, J. Vykoukal, P. N. Floriano, M. Olsen, J. T. Mcdevitt, P. R. C. Gascoyne and S. Chen. ” A Continuous- Flow Polymerase Chain Reaction Microchip With Regional Velocity Control.” J. Microelectromech. Syst., vol. 15, pp. 223-236, 2006.
[11]K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo and H. Misawa. “A heater-integrated transparent microchannel chip for continuous-flow PCR.” Sens. actuators. B Chem., vol. 84, pp. 283-289, 2002.
[12]Z. X. Guo, X. Wu, W. Chen, F. Cui, W. Zhang and W. Liu. “Polymerase chain reaction chip with microchannel of glass capillaries embedded” Electron. Lett., vol. 51, pp. 1748-1750, 2015.
[13]L. T. L. Trinh, H. Zhang, D. J. Kang, S. H. Kahng, B. D. Tall, N. Y. Lee. “Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses.” Int. Neurourol J., vol. 20, pp. 38-48, 2016.
[14]Y. H. Chang, G. B. Lee, F. C. Huang, Y. Y. Chen and J. L. Lin. “Integrated polymerase chain reaction chips utilizing digital microfluidics.” Biomed. Microdevices, vol. 8, pp. 215-225, 2006.
[15]Z. S. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell and M. G. Pollack. “Multiplexed Real-Time Polymerase Chain Reaction on a Digital Microfluidic Platform.” Anal. Chem., vol. 82, pp. 2310-2316, 2010.
[16]A. Rival, D. Jary, C. Delattre, Y. Fouillet, G. Castellan, A. Bellemin-Comte and X. Gidrol. “An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR.” Lab Chip, vol. 14, pp. 3739-3749, 2014.
[17]R. Prakash, K. Pabbaraju, S. Wong, A. Wong, R. Tellier and K. V. I. S. Kaler. “Droplet microfluidic chip based nucleic acid amplification and real-time detection of influenza viruses.” J. Electrochem. Soc., 161, 3083–3093, 2014.
[18]陳安得,DNA萃取和即時聚合酶鏈鎖反應於數位微流體晶片,國立臺灣大學工學院機械工程學系碩士論文,民國105年。[19]X. J. Bian, F. X. Jing, G. Li, X. Y. Fan, C. P. Jia, H. B. Zhou, Q. H. Jin and J. L. Zhao. “A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes.” Biosens. Bioelectron., vol. 74, pp. 770-777, 2015.
[20]T. D. Rane, L. Chen, H. C. Zec and T. H. Wang. “Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP).” Lab Chip, vol. 15, pp. 776-782, 2015.
[21]F. Schuler, F. Schwemmer, M. Trotter, S. Wadle, R. Zengerle, F. V. Stetten and N. Paust. “Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA.” Lab Chip, vol. 15, pp. 2759-2766, 2015.
[22]W. W. Liu, Y. Zhu, Y. M. Feng, J. Fang and Q. Fang. “Droplet-Based Multivolume Digital Polymerase Chain Reaction by a Surface-Assisted Multifactor Fluid Segmentation Approach.” Anal Chem, vol. 89, pp. 822-829, 2017.
[23]F. Shen, W. Du, J. E Kreutz, A. Fok and F. Ismagilov. “Digital PCR on a SlipChip” Lab Chip, vol. 10, pp. 2666-2672, 2010.
[24]F. Shen, E. K. Davydova, W. Du, J. E. Kreutz, O. Piepenburg, and R. F. Ismagilov. “Digital Isothermal Quantification of Nucleic Acids via Simultaneous Chemical Initiation of Recombinase Polymerase Amplification Reactions on SlipChip.” Anal. Chem., vol. 83, pp. 3533-3540, 2011.
[25]S. O. Sundberg, C. T. Wittwer, L. Zhou, R. Palais, Z. Dwight and B. K. Gale. “Quasidigital PCR: Enrichment and quantification of rare DNA variants.” Biomed. Microdevices, vol. 16, pp. 639-644, 2014.
[26]S. O. Sundberg, C. T. Witter, C. Gao and B. K. Gale. “Spinning Disk Platform for Microfluidic Digital Polymerase Chain Reaction.” Anal. Chem., vol. 82, pp. 1546-1550, 2010.
[27]Q. Zhu, Y. Gao, B. Yu, H. Ren, L. Qiu, S. Han, W. Jin, Q. Jin and Y. Mu. “Self-priming compartmentalization digital LAMP for point-of-care.” Lab Chip, vol. 12, pp. 4755-4763, 2012.
[28]A. Ganson, A. M. Herrick, I. K. Dimov, L. P. Lee and D. T. Chiu. “Digital LAMP in a sample self-digitization (SD) chip.” Lab Chip, vol. 12, pp. 2247-2254, 2012.
[29]T. Schneider, G. S. Yen, A. M. Thomson, D. R. Burnham and D. T. Chiu. “Self-Digitization of Samples into a High-Density Microfluidic Bottom-Well Array.” Anal. Chem., vol. 85, pp. 10417-10423, 2013.
[30]D. E. Cohen, T. Schneider, M. Wang and D. T. Chiu. “Self-Digitization of Sample Volumes.” Anal. Chem., vol. 82, pp. 5707-5717, 2010.
[31]Q. Zhu, L. Qiu, B. Yu, Y. Xu, Y. Gao, T. Pan, Q. Tian, Q. Song, W. Jin, Q. Jin and Y. Mu. “Digital PCR on an integrated self-priming compartmentalization chip.” Lab Chip, vol. 14, pp. 1176-1185, 2014.
[32]A. Ganson, A. M. Herrick, I. K. Dimov, L. P. Lee and D. T. Chiu. “Digital LAMP in a sample self-digitization (SD) chip.” Lab Chip, vol. 12, pp. 2247-2254, 2012.
[33]J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp and R. Schwartz “Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions.” Nat. Photonics, vol. 26, pp. 292-296, 2009.
[34]Q. Zhu, Y. Xu, L. Qiu, C. Ma, B. Yu, Q. Song, W. Jin, Q. Jin, J. Liu and Y. Mu. “A scalable self-priming fractal branching microchannel net chip for digital PCR.” Lab Chip, vol. 17, pp. 1655-1665, 2017.
[35]Y. Matsubara, K. Kerman, M. Kobayashi, S. Yamamura, Y. Morita and E. Tamiya. “Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes.” Biosens. Bioelectron., vol. 20, pp. 1482-1490, 2005.
[36]Y. Zhang, Y. Zhu, B. Yao and Q. Fang. “Nanolitre droplet array for real time reverse transcription polymerase chain reaction.” Lab Chip, vol. 11, pp. 1545-1549, 2011.
[37]L. Z. Chen, X. G. Fan and J. M. Gao. “Detection of HBsAg, HBcAg, and HBV DNA in ovarian tissues from patients with HBV infection.” World J. Gastroenterol., vol. 11, pp. 5565-5567, 2005.
[38]J. T. Huang, Y. J. Liu, J. Wang, Z. G. Xu, Y. Yang, F. Shen, X. H. Liu, X. Zhou and S. M. Liu. “Next Generation Digital PCR Measurement of Hepatitis B Virus Copy Number in Formalin-Fixed Paraffin-Embedded Hepatocellular Carcinoma Tissue.” Clin. Chem., vol. 61, pp. 290-296, 2015.
[39]K. S. Thress, R. Brant, T. H. Carr, S. Dearden, S. Jenkins, H. Brown, T. Hammett, M. Cantarini and J. C. Barrett. “EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross platform comparison of leading technologies to support the clinical development of AZD9291.” Lung cancer, vol. 90, pp. 509-515, 2015.
[40]Q. Yu, F. Huang, M. Zhang, H. Ji, S. Wu, Y. Zhao, C. Zhang, J. Wu, B. Wang, B. Pan, X. Zhang, W. Guo. “Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients.” Mol Med Rep., vol. 16, pp. 1157-1166, 2017.
[41]C. J. Elkin, S. B. Brown, S. N. Nasarabadi, R. G. Langlois, F. P. Milanovich, and B. W. Colston Jr. “A Reusable Flow-Through Polymerase Chain Reaction Instrument for the Continuous Monitoring of Infectious Biological Agents.” Anal. Chem., vol. 75, pp. 3446-3450, 2003.
[42]J. Waggoner, D.Y. Ho, P. Libiran, B.A. Pinsky. “Clinical significance of low cytomegalovirus DNA levels in human plasma.” J. Clin. Microbiol., vol. 50, pp. 2378-2383, 2012.
[43]Y. Cao, M. R. Raith, J. F. Griffith. “Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment.” Water Res., vol. 70, pp. 337-349, 2014.
[44]W. Adamson. “Physical Chemistry of Surface, Sixth ed, John Wiley & Son” pp. 354, 1967.
[45]S. K. Fan, P. W. Huang, T. T. Wang and Y. H. Peng. “Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting.” Lab Chip, vol. 8, pp. 1325-1331, 2008.
[46]D. Gennes, P. Gilles, F. B. Wyart and D. Quere. “Capillarity and Wetting Phenomena. Springer” pp. 7–8, 2004.
[47]S. K. Fan, Y. W. Hsu and C. H. Chen. “Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis.” Lab Chip, vol. 11, pp. 2500-2508, 2011.
[48]C. Lui, N. C. Cady and C. A. Batt. “Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems.” Sensor, vol. 9, pp. 3713-3744, 2009.
[49]N. A. Campbell, J. B. Reece and L. G. Mitchell. “Biology” Addison Wesley Longman Inc, 1999.
[50]P. T. Cagle, T. C. Allen. “Basic Concepts of Molecular Pathology.” Arch. Pathol. Lab. Med., vol. 132, pp. 1551-1556, 2008.
[51]A. S. Basu “Digital Assays Part I: Partitioning Statistics and Digital PCR” SLAS Technol, vol. 22, pp. 369-386, 2017.
[52]S. Dube, J. Qin, R. Ramakrishnan. “Mathematical Analysis of Copy Number Variation in a DNA Sample Using Digital PCR on a Nanofluidic Device.” PLoS One, vol. 3, pp. 1-9, 2008.
[53]Bio-Rad Corporation. “Droplet Digital PCR Applications Guide.” pp. 94-96, 2014.
[54]A. S. Whale, J. F. Huggett, S. Cowen, V. Speir, J. Shaw, S. Ellison, C. A. Foy and D. J. Scott. “Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation.” Nucleic Acids Res., vol. 40, pp. 82-91, 2012.
[55]T. Pfohl, J. H. Kim, M. Yasa, H. P. Miller, G. C. L. Wong, F. Bringezu, Z. Wen, L. Wilson, M. W. Kim, Y. Li, and C. R. Safinya. “Controlled Modification of Microstructured Silicon Surfaces for Confinement of Biological Macromolecules and Liquid Crystals.” Langmuir, vol. 17, pp. 5343-5351, 2001.
[56]Y. W. Yi, H. G. Robinson, S. Knappe, J. E. Maclennan, C. D. Jones and C. Zhu, N. A. Clark and J. Kitching. “Method for characterizing self-assembled monolayers as antirelaxation wall coatings for alkali vapor cells.” J. APPL. PHYS., vol. 104, pp. 023534, 2008.
[57]B. Boddinghaus, T. A. Wichelhaus, V. Brade and T. Bittner. “Removal of PCR Inhibitors by Silica Membranes: Evaluating the Amplicor Mycobacterium tuberculosisKit.” J. Clin. Microbiol., vol. 39, pp. 3750-3752, 2001.