|
[1] PHAP, “Innovation-The R&D Process”. [2] Jordan Feigenbaum, Dynamic Fitness Coach Preview – Muscle A & P., September 27, 2012 [3] Richfield, Medical gallery of David Richfield. WikiJournal of Medicine, 2014 1 (2). DOI:10.15347/wjm/2014.009. ISSN 2002-4436. [4] Chan, Y. C., Ting, S., Lee, Y. K., Ng, K. M., Zhang, J., Chen, Z., & Tse, H. F. (2013). Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells. Journal of cardiovascular translational research, 6(6), 989-999. [5] Zimmermann, W. H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J. F., & Eschenhagen, T. (2002). “Tissue engineering of a differentiated cardiac muscle construct”. Circulation research, 90(2), 223-230. [6] Dou, W.K., Wang L., Malhi M., Xu Z., Liu H., Plakhotnik J., T.Maynes J., & Sun Y (2018). A Micro Device Array For Mechanical Stimulation And Contractility Measurement Of hiPSC-Cardiomyocyte. μTAS, PG1586. [7] Pietronave, S., Zamperone, A., Oltolina, F., Colangelo, D., Follenzi, A., Novelli, E., & Soncini, M. (2013). Monophasic and biphasic electrical stimulation induces a precardiac differentiation in progenitor cells isolated from human heart. Stem cells and development, 23(8), 888-898. [8] Serena, E., Figallo, E., Tandon, N., Cannizzaro, C., Gerecht, S., Elvassore, N., & Vunjak-Novakovic, G. (2009). Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Experimental cell research, 315(20), 3611-3619. [9] Bursac, N., Parker, K. K., Iravanian, S., & Tung, L. (2002). Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle. Circulation research, 91(12), e45-e54. [10] Chen-Hao Chan (2017). Development of Aligned P(VDF-TrFE) Piezoelectric Nanofiber Bundles for Cardiac Drug Screening Application. Master''s Thesis of Institute of Applied Mechanics. National Taiwan University, Taiwan (R.O.C) [11] Chan, Y. C., Ting, S., Lee, Y. K., Ng, K. M., Zhang, J., Chen, Z., & Tse, H. F. (2013). Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells. Journal of cardiovascular translational research, 6(6), 989-999. [12] Holt, E., Lunde, P. K., Sejersted, O. M., & Christensen, G. (1997). Electrical stimulation of adult rat cardiomyocytes in culture improves contractile properties and is associated with altered calcium handling. Basic research in cardiology, 92(5), 289-298. [13] Xia, Y., Buja, L. M., Scarpulla, R. C., & McMillin, J. B. (1997). Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proceedings of the National Academy of Sciences, 94(21), 11399-11404.. [14] Brevet, A., Pinto, E., Peacock, J., & Stockdale, F. E. (1976). Myosin synthesis increased by electrical stimulation of skeletal muscle cell cultures. Science, 193(4258), 1152-1154. [15] McDonough, P. M., & Glembotski, C. C. (1992). Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. Journal of Biological Chemistry, 267(17), 11665-11668. [16] Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., & Vunjak-Novakovic, G. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences, 101(52), 18129-18134. [17] Xiao, Y., Zhang, B., Liu, H., Miklas, J. W., Gagliardi, M., Pahnke, A., & Radisic, M. (2014). Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab on a Chip, 14(5), 869-882. [18] Tandon, N., Marsano, A., Maidhof, R., Wan, L., Park, H., & Vunjak‐Novakovic, G. (2011). Optimization of electrical stimulation parameters for cardiac tissue engineering. Journal of tissue engineering and regenerative medicine, 5(6), e115-e125. [19] Tandon, N., Cannizzaro, C., Chao, P. H. G., Maidhof, R., Marsano, A., Au, H. T. H., ... & Vunjak-Novakovic, G. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature protocols, 4(2), 155. [20] Kim, J., Park, J., Na, K., Yang, S., Baek, J., Yoon, E., & Park, S. (2008). Quantitative evaluation of cardiomyocyte contractility in a 3D microenvironment. Journal of biomechanics, 41(11), 2396-2401. [21] Shen, K., Qi, J., & Kam, L. C. (2008). Microcontact printing of proteins for cell biology. JoVE (Journal of Visualized Experiments), (22), e1065. [22] Knight, M. B., Drew, N. K., McCarthy, L. A., & Grosberg, A. (2016). Emergent global contractile force in cardiac tissues. Biophysical journal, 110(7), 1615-1624. [23] Linder, P., Trzewik, J., Rüffer, M., Artmann, G. M., Digel, I., Kurz, R., & Artmann, A. T. (2010). Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes. Medical & biological engineering & computing, 48(1), 59. [24] Wang L., Wang X., Dou W., Zhao Q., Malhi M., Cui T., Zhang Z., T. Maynes J., & Sun Y (2018). Characterizing contractile stress of hiPSC-cardiomyocytes via electrical impedance measurement. μTAS, PG0844. [25] Lind, J. U., Busbee, T. A., Valentine, A. D., Pasqualini, F. S., Yuan, H., Yadid, M., & Vlassak, J. J. (2017). Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nature materials, 16(3), 303. [26] Liu, X., Zhao, H., Lu, Y., Li, S., Lin, L., Du, Y., & Wang, X. (2016). In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers. Nanoscale, 8(13), 7278-7286. [27] Mathur, A., Loskill, P., Shao, K., Huebsch, N., Hong, S., Marcus, S. G., & Healy, K. E. (2015). Human iPSC-based cardiac microphysiological system for drug screening applications. Scientific reports, 5, 8883. [28] Huebsch, N., Charrez, B., Siemons, B., Boggess, S. C., Wall, S., Charwat, V., & Edwards, A. (2018). Metabolically-driven maturation of hiPSC-cell derived heart-on-a-chip. bioRxiv, 485169. [29] Lind, J. U., Yadid, M., Perkins, I., O''Connor, B. B., Eweje, F., Chantre, C. O., & Parker, K. K. (2017). Cardiac microphysiological devices with flexible thin-film sensors for higher-throughput drug screening. Lab on a Chip, 17(21), 3692-3703. [30] Hsin-Hu Wang (2015). Development of a Light-activated Optopiezoelectric Thin-Film and its Applications on Microfluidics System. National Taiwan University, Taiwan (R.O.C) [31] Jia-Wei Shen (2015). A Polymer-based piezoelectric transducer for real-time monitoring contractile behavior of cardiomyocytes. Master''s Thesis of Institute of Applied Mechanics. National Taiwan University, Taiwan (R.O.C) [32] Yun-Han Huang (2017). Development of a Cardiac-and-Piezoelectric Hybrid System for Cardiac Drug Screening. Master''s Thesis of Institute of Applied Mechanics. National Taiwan University, Taiwan (R.O.C) [33] Sekine, H., Shimizu, T., Sakaguchi, K., Dobashi, I., Wada, M., Yamato, M., & Okano, T. (2013). In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nature communications, 4, 1399.
|