( 您好!臺灣時間:2021/03/02 15:52
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Kuan-Ting Liu
論文名稱(外文):Optical Trapping of Gold Nanostructure on Polystyrene Bead and Photothermal/Optomechanical Deformation of Gold Nanoparticle
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This thesis is divided into two parts: the first part is related to the optical trapping of gold nanostructure, and the second the photothermal and optomechanical deformation of gold nanoparticle (NP). We adopt the multiple-multipole expansions method to calculate the electromagnetic field of light-mater interaction, and then utilize Maxwell’s stress tensor to obtain the optical traction and force upon the object for both parts.
In the first part, we study the optical trapping on a polystyrene bead by a gold nanostructure (dimer, trimer or tetramer), irradiated by a linearly polarized (LP) Gaussian beam. The streamline field of optical force for a dimer shows that the stagnation point of noncontact-mode trapping can follow the dimer to move if the polarization direction is not perpendicular to the orientation of dimer. However, the noncontact-mode trapping ability of a dimer depends on the polarization direction very much. In contrast, the trapping ability of a trimer and tetramer is not sensitive to the polarization. The results of a 2D dimer array or 1D trimer array also show that if the gap coupling in the cluster is induced by a LP light the stagnation point of noncontact mode will follow the array to move. The step-like jump of the trapped NP will occur as the array continuously moves away from the optical axis.
In the second part, we study the photothermal and optomechanical deformation of a gold NP under the irradiation of a LP Gaussian beam. Due to the photothermal heating, the gold NP becomes softened. In addition, the optomechanical effect, the optical traction exerted upon the surface of NP, causes the deformation. Our results show that the photothermal effect softens NP to become semi-solid, and the optical stretching tractions at the two ends of NP elongate it. As a result, the NP becomes a nanorod (NR). In addition, optical pinching traction at the middle circumference of NR causes a necking. Subsequently, the elongated NR will be cut into two smaller NRs by the optical traction. If we continuously irradiate the NRs, liquid gold is induced, and the surface tension will spherify these NRs.
口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 本文內容 7
第2章 電磁理論 8
2.1 高斯光束(Gaussian beam) 8
2.2 Maxwell應力張量(Maxwell stress tensor) 10
第3章 數值模擬結果討論 11
3.1 金奈米結構對聚苯乙烯珠之光力捕捉 11
3.1.1 單組 12 二聚體 16 三聚體 25 四聚體 34
3.1.2 陣列 43 二維二聚體陣列 43 一維三聚體陣列 53
3.2 金奈米粒子在高斯光束下之光熱/光力變形 61
第4章 結論與未來展望 71
4.1 研究結論 71
4.2 未來展望 73
第5章 參考文獻 74
附錄 展開中心擺放位置 77
[1]M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero, and E. Cummins “Nanotechnologies in the food industry–Recent developments, risks and regulation,” Trends in Food Science and Technology 24(1), 30-46, 2012.
[2]Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, and R. Watkins, “Applications and implications of nanotechnologies for the food sector,” Food A dditives 25(3), 241-258, 2008.
[3]X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” Journal of the American Chemical Society 128(6), 2115-2120, 2006.
[4]M. Sarikaya, C. Tamerler, K. Schulten, and F. Baneyx, “Molecular biomimetics: nanotechnology through biology,” Nature Materials 2(9), 577, 2003.
[5]S.-J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503-1506, 2002.
[6]S. Y. Park, A. K. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “''DNA-programmable nanoparticle crystallization,” Nature Communications 451(7178), 553, 2008.
[7]C. Girard, and A. Dereux, “Near-field optics theories,” Reports on Progress in Physics 59(5), 657, 1996.
[8]E. Betzig, and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” J Science 257(5067), 189-195, 1992.
[9]F. J. Giessibl, “Advances in atomic force microscopy,” Reviews of Modern Physics 75(3), 949, 2003.
[10]H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy,” J Nature 384(6605), 147, 1996.
[11]H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Physical Review Letters 83(21), 4357, 1999.
[12]B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing, ” Sensors and Actuators 4, 299-304, 1983.
[13]S. K. Ghosh, and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chemical Reviews 107(11), 4797-4862, 2007.
[14]E. Hutter, and J. H. Fendler, “Exploitation of localized surface plasmon resonance, ” Advanced materials 16(19), 1685-1706, 2004.
[15]K. M. Mayer, and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chemical Reviews 111(6), 3828-3857, 2011.
[16]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proceedings of the Physical Society of London 18(1), 269, 1902.
[17]U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves), ” JOSA 31(3), 213-222, 1941.
[18]R. Ritchie, “Plasma losses by fast electrons in thin films,” Physical Review 106(5), 874, 1957.
[19]J. Barton, D. Alexander, and S. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” Journal of Applied Physics 66(10), 4594-4602, 1989.
[20]D. Phillips, M. Padgett, S. Hanna, Y. L. Ho, D. Carberry, M. Miles, and S. Simpson, “Shape-induced force fields in optical trapping,” Nature Photonics 8(5), 400, 2014.
[21]A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nature Photonics 2(6), 365, 2008.
[22]J.-H. Kang, K. Kim, H.-S. Ee, Y.-H. Lee, T.-Y. Yoon, M.-K. Seo, and H.-G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nature Communications 2, 582, 2011.
[23]簡喬偉, “奈米粒子在金奈米陣列的光力場作用下之渦漩運動,” 國立台灣大學應用力學研究所碩士論文, 2018.
[24]D. Andrén, L. Shao, N. Odebo Länk, S. S. Aćimović, P. Johansson, and M. Käll, “Probing photothermal effects on optically trapped gold nanorods by simultaneous plasmon spectroscopy and brownian dynamics analysis, ” ACS nano 11(10), 10053-10061, 2017.
[25]S. Wang, and T. Ding, “Photothermal-assisted optical stretching of gold nanoparticles,” ACS Nano 13(1), 32-37, 2018.
[26]I. N. Vekua, New methods for solving elliptic equations. North-Holland, 1967.
[27]C. Hafner, Post-modern electromagnetics: using intelligent Maxwell solvers. John wiley&sons, New York, 1999.
[28]劉昆奇, “奈米金球二聚體陣列對聚苯乙烯球之電漿子媒介光力效應,” 國立台灣大學應用力學研究所碩士論文, 2017.
[29]K. T. McDonald, “Total and Frustrated Reflection of a Gaussian Optical Beam, ” Joseph Henry Laboratories, Princeton University, 2009.
[30]L. Novotny, and B. Hecht, Principles of nano-optics. Cambridge University Press, 2012.
[31]K.-Y. Chen, A.-T. Lee, C.-C. Hung, J.-S. Huang, and Y.-T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Letters 13(9), 4118-4122, 2013.
[32]K. Nanda, A. Maisels, and F. Kruis, “Surface tension and sintering of free gold nanoparticles,” The Journal of Physical Chemistry C 112(35), 13488-13491, 2008.
[33]G.-F. Wang, and X.-Q. Feng, “Effects of surface elasticity and residual surface tension on the natural frequency of microbeams,” Applied Physics Letters 90(23), 231904, 2007.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔