(54.236.58.220) 您好!臺灣時間:2021/02/27 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳世杰
研究生(外文):Shih-Jie Chen
論文名稱:結合螢光金奈米團簇與微流體紙張平臺應用於水中汞離子檢測
論文名稱(外文):Detection of Mercury Ions Using Fluorescent Gold Nanoclusters on Paper-Based Devices
指導教授:陳建甫陳建甫引用關係朱錦洲
指導教授(外文):Chien-Fu ChenChin-Chou Chu
口試委員:葉怡均余政儒
口試委員(外文):Yi-Chun YehCheng-Ju Yu
口試日期:2019-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:32
中文關鍵詞:螢光金奈米團簇汞離子檢測微流體紙張平臺彈簧機構注射器
DOI:10.6342/NTU201902764
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合金奈米團簇 (BSA-AuNCs) 與加上設計機構之微流體紙張平臺,達到不須電力即可針對水環境中的汞離子進行現場檢測。偵測汞的機制為二價汞離子與一價金離子之高親和性 (High-affinity metallophilic) 所造成BSA-AuNCs之螢光淬滅。此研究為將BSA-AuNCs乾燥固定在已進行表面改質之紙張平臺上並放入設計機構中,將樣本溶液透過注射器使溶液穩定的通過檢測試紙,檢測完成後利用UV光源照射並觀測紙張上的螢光變化以達到簡易偵測目的。本研究亦透過含有彈簧之注射器及流速穩定器達到自動進樣以實現現場檢測。紙張之表面改質可改善螢光奈米材料的附著性,增加其檢測之穩定性且檢測時所使用之設計機構均為利用3D列印製作而成。此研究進行了紙張改質的比較、不同濃度的BSA-AuNCs以及數種溶液體積與流率的測試,並使用此平臺針對汞離子檢測之靈敏度與專一性進行分析。本平臺可在30分鐘內完成水中汞金屬的檢測,且可定量之最小濃度為1 nM,低於美國國家環境保護局 (EPA) 所制定飲用水中汞含量之標準 (10 nM),其裝置不須電力驅動、容易攜帶且操作簡易,可應用於現場檢測。本研究所研發之微流體紙張平臺在未來預期可再擴增其他螢光奈米材料,進行同時多工檢測,應用於水中數種重金屬離子之偵測。
In this study, we combine the gold nanoclusters (BSA-AuNCs) with the microfluidic paper platform to enable on-site detection of mercury ions in the water environment without the need for electricity. The sensing mechanism is based on the high-affinity metallophilic between mercury and gold ions, which quenches the fluorescence of BSA-AuNCs. First, BSA-AuNCs are dried on a paper platform modified by carboxymethylcellulose-1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (CMC-EDC/NHS). The surface modification of the paper improves the adhesion of the fluorescent nanomaterial and increases the stability of the detection. The sample solution was steadily passed through the test strip by a syringe integrated with a spring pump and a PDMS-based thin-film flow stabilizer. After the detection was completed, the UV light was used to irradiate the test strip and the fluorescent change was analyzed and recorded by an Arduino-based detector. The comparison of surface-modifications, different concentrations of BSA-AuNCs, several solution volume and flow rates were studied to obtain the optimized results. In order to verify the ability of the proposed platform, we analyzed the mercury ions in the water using this platform. The results showed that the limit of quantitation of 1 nM of mercury ions is obtained in 30 minutes. We expect this power-free and portable platform can combine with other fluorescent nanomaterials for simultaneous multiplex detection on-site and in the resource-limited areas.
論文口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 xi
第一章 前言與文獻回顧 1
1.1 汞離子之危害 1
1.2 汞離子之檢測方式 1
1.3 固相萃取之微量吸管 2
1.4 金奈米粒子 (AuNPs) 探針 3
1.5 金奈米團簇探針 4
1.6 金奈米團簇紙張平臺 4
1.7 結合注射器之免疫分析紙張平臺 5
1.8 流速穩定器 6
1.9 本研究所提出之平臺 7
第二章 材料與實驗方法 8
2.1 實驗藥劑 8
2.2 儀器設備 8
2.3 溶液配置 9
2.3.1 氯化鈣溶液配製 9
2.3.2 CMC溶液配置 9
2.3.3 EDC/NHS溶液配置 9
2.3.4 PBS溶液配置 9
2.4 金奈米團簇Au25 (BSA-AuNCs) 合成 9
2.5 3D設計機構製造 10
2.6 紙張平臺製備與CMC-EDC/NHS紙張表面改質 11
2.7 平臺之最佳化參數測試 12
2.7.1 CMC-EDC/NHS紙張表面改質測試 12
2.7.2 紙上乾燥之BSA-AuNCs濃度測試 12
2.7.3 溶液體積與流率測試 13
2.8 汞離子檢測 13
2.8.1 靈敏度測試 13
2.8.2 對其他金屬離子之專一性測試 14
2.9 含有彈簧之注射器及流速穩定器製造 14
第三章 實驗結果與討論 15
3.1 金奈米團簇Au25 (BSA-AuNCs) 合成鑑定 15
3.2 CMC-EDC/NHS紙張表面改質測試 16
3.3 紙上乾燥之BSA-AuNCs濃度測試 18
3.4 溶液體積與流率測試 20
3.5 汞離子靈敏度測試 22
3.6 對其他金屬離子之專一性測試 24
3.7 含有彈簧之注射器及流速穩定器測試 26
第四章 結論與展望 28
參考文獻 29
[1]D. W. Boening, "Ecological effects, transport, and fate of mercury: a general review," Chemosphere, vol. 40, no. 12, pp. 1335-51, Jun 2000.
[2]N. E. Selin, "Global Biogeochemical Cycling of Mercury: A Review," Annual Review of Environment and Resources, vol. 34, pp. 43-63, 2009.
[3]T. W. Clarkson, L. Magos, and G. J. J. N. E. J. o. M. Myers, "The toxicology of mercury—current exposures and clinical manifestations," N Engl J Med, vol. 349, no. 18, pp. 1731-1737, 2003.
[4]L. Jarup, "Hazards of heavy metal contamination," British Medical Bulletin, vol. 68, no. 1, pp. 167-182, 2003.
[5]G. Guzzi and C. A. La Porta, "Molecular mechanisms triggered by mercury," Toxicology, vol. 244, no. 1, pp. 1-12, Feb 3 2008.
[6]World Health Organization, "Mercury and health," 2017.
[7]E. M. Nolan and S. J. Lippard, "Tools and tactics for the optical detection of mercuric ion," Chemical Reviews, vol. 108, no. 9, pp. 3443-3480, Sep 2008.
[8]E. M. Nolan and S. J. Lippard, "Turn-on and ratiometric mercury sensing in water with a red-emitting probe," J Am Chem Soc, vol. 129, no. 18, pp. 5910-8, May 9 2007.
[9]I. B. Kim and U. H. Bunz, "Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water," J Am Chem Soc, vol. 128, no. 9, pp. 2818-9, Mar 8 2006.
[10]Y. Zhao and Z. Zhong, "Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy," J Am Chem Soc, vol. 128, no. 31, pp. 9988-9, Aug 9 2006.
[11]X. Liu et al., "Optical detection of mercury (II) in aqueous solutions by using conjugated polymers and label‐free oligonucleotides," Advanced Materials, vol. 19, no. 11, pp. 1471-1474, 2007.
[12]A. Ono and H. Togashi, "Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions," Angew Chem Int Ed Engl, vol. 43, no. 33, pp. 4300-2, Aug 20 2004.
[13]J. S. Lee, M. S. Han, and C. A. J. A. C. I. E. Mirkin, "Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA‐functionalized gold nanoparticles," Angew Chem Int Ed Engl, vol. 46, no. 22, pp. 4093-4096, 2007.
[14]C. K. Chiang, C. C. Huang, C. W. Liu, and H. T. Chang, "Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution," Anal Chem, vol. 80, no. 10, pp. 3716-21, May 15 2008.
[15]C.-W. Liu, Y.-T. Hsieh, C.-C. Huang, Z.-H. Lin, and H.-T. J. C. C. Chang, "Detection of mercury (II) based on Hg 2+–DNA complexes inducing the aggregation of gold nanoparticles," Chem Commun, no. 19, pp. 2242-2244, 2008.
[16]X. J. Xue, F. Wang, and X. G. Liu, "One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates," Journal of the American Chemical Society, vol. 130, no. 11, pp. 3244-+, Mar 19 2008.
[17]M. Matsushita, M. M. Meijler, P. Wirsching, R. A. Lerner, and K. D. Janda, "A blue fluorescent antibody-cofactor sensor for mercury," Org Lett, vol. 7, no. 22, pp. 4943-6, Oct 27 2005.
[18]S. V. Wegner, A. Okesli, P. Chen, and C. He, "Design of an emission ratiometric biosensor from MerR family proteins: a sensitive and selective sensor for Hg2+," J Am Chem Soc, vol. 129, no. 12, pp. 3474-5, Mar 28 2007.
[19]J. Liu and Y. J. A. C. I. E. Lu, "Rational design of “turn‐on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity," Angew Chem Int Ed Engl, vol. 46, no. 40, pp. 7587-7590, 2007.
[20]T. Li, B. Li, E. Wang, and S. Dong, "G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye," Chem Commun, no. 24, pp. 3551-3, Jun 28 2009.
[21]Y. K. Yang, K. J. Yook, and J. Tae, "A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media," J Am Chem Soc, vol. 127, no. 48, pp. 16760-1, Dec 7 2005.
[22]J. Xie, Y. Zheng, and J. Y. J. C. C. Ying, "Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions," Chem Commun, vol. 46, no. 6, pp. 961-963, 2010.
[23]T. De Smaele, L. Moens, R. Dams, P. Sandra, J. Van der Eycken, and J. J. J. o. C. A. Vandyck, "Sodium tetra (n-propyl) borate: a novel aqueous in situ derivatization reagent for the simultaneous determination of organomercury,-lead and-tin compounds with capillary gas chromatography–inductively coupled plasma mass spectrometry," J Chromatogr A, vol. 793, no. 1, pp. 99-106, 1998.
[24]E. P. Nardi et al., "The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples," Food Chemistry, vol. 112, no. 3, pp. 727-732, Feb 1 2009.
[25]X. Chen et al., "Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry," J Chromatogr A, vol. 1314, pp. 86-93, Nov 1 2013.
[26]H. R. Rajabi, M. Shamsipur, M. M. Zahedi, and M. Roushani, "On-line flow injection solid phase extraction using imprinted polymeric nanobeads for the preconcentration and determination of mercury ions," Chemical Engineering Journal, vol. 259, pp. 330-337, Jan 1 2015.
[27]N. Tokman and S. Akman, "Determination of bismuth and cadmium after solid-phase extraction with chromosorb-107 in a syringe," Analytica Chimica Acta, vol. 519, no. 1, pp. 87-91, Aug 9 2004.
[28]Naeemullah et al., "Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry," Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, vol. 154, pp. 157-163, Feb 5 2016.
[29]K. Chatterjee, C. W. Kuo, A. Chen, and P. L. Chen, "Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper," Journal of Nanobiotechnology, vol. 13, no. 1, p. 46, Jun 26 2015.
[30]G. E. N. Pauli, A. de la Escosura-Muniz, C. Parolo, I. H. Bechtold, and A. Merkoci, "Lab-in-a-syringe using gold nanoparticles for rapid immunosensing of protein biomarkers," Lab Chip, vol. 15, no. 2, pp. 399-405, 2015.
[31]N. Xiang, Y. Han, Y. Jia, Z. Shi, H. Yi, and Z. Ni, "Flow stabilizer on a syringe tip for hand-powered microfluidic sample injection," Lab Chip, vol. 19, no. 2, pp. 214-222, Jan 15 2019.
[32]J. P. Xie, Y. G. Zheng, and J. Y. Ying, "Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters," Journal of the American Chemical Society, vol. 131, no. 3, pp. 888-+, Jan 28 2009.
[33]C. H. Yang, C. A. Chen, and C. F. Chen, "Surface-modified cellulose paper and its application in infectious disease diagnosis," Sensors and Actuators B-Chemical, vol. 265, pp. 506-513, Jul 15 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔