[1]S. Roundy, D. Steingart, L. Frechette, P. Wright and J. Rabaey. Power source for wireless sensor networks.Lecture Notes in Computer Science, 2920:1-17, 2004.
[2]F. Akhtar and M. H. Rehmani. Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable and Sustainable Energy Reviews, 45:769-784, 2015.
[3]S. P. Beeby, M. J. Tudor and N. M. White. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17:R175-R195, 2006.
[4]R. J. M. Vullers, R. V. Schaijk, I. Doms, C. V. Hoof and R. Mertens. Micropower energy harvesting. Solid-State Electronics, 53:684-693, 2009.
[5]S. Cheng, N. Wang and D. P. Arnold. Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. Journal of Micromechanics and Microengineering, 17:2328-2335, 2007.
[6]Y. Chiu and V. F. G. Tseng. A capacitive vibration-to-electricity energy converter with integrated mechanical switches. Journal of Micromechanics and Microengineering, 18:104004, 2008.
[7]S. Roundy, P. K. Wright and J. Rabaey. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26:1131-1144, 2003.
[8]E. E. Aktakka and K. Najafi. A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE Journal of Solid-State Circuit, 49:2017-2029, 2014.
[9]N. Shenck, A Demonstration of Useful Electric Energy Generation from Piezoceramics in a Shoe, MS thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Mass., 1999.
[10]N. S. Shenck and J. A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro, 21:30-42, 2001.
[11]T. H. Ng and W. H. Liao. Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor. Journal of Intelligent Materials Systems and Structures, 16:785-797, 2005.
[12]N. G. Elvin, A. A. Elvin and M. Spector. A self-powered mechanical strain energy sensor. Smart Materials and Structures, 10:293-299, 2001.
[13]N. W. Hagood, W. H. Chung and A. V. Flotow. Modeling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct, 1:327-354, 1990.
[14]C. J. Rupp, A. Evgrafov, K. Maute and M. L. Dunn. Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells. Journal of Intelligent Material Systems and Structures, 20:1923–1939, 2009.
[15]W. Zhou, G. R. Penamalli and L. Zuo. An Efficient Vibration Energy Harvester with a Multi- Mode Dynamic Magnifier. Smart Materials and Structures, 21:015014, 2012.
[16]T. Seuaciuc-Osorio and M. F. Daqaq. On the Reduced-Order Modeling of Energy Harvesters. Journal of Intelligent Material Systems and Structures, 20:2003–2016, 2009.
[17]J. L. Kauffman and G. A. Lesieutre. A Low- Order Model for the Design of Piezoelectric Energy Harvesting Devices. Journal of Intelligent Material Systems and Structures, 20:495–504, 2009.
[18]A. Erturk and D. J. Inman. Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures, 17:065016, 2008.
[19]A. M. Wickenheiser and E. Garcia. Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits. Journal of Intelligent Material Systems and Structures, 21:1343–1361, 2010.
[20]G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre. Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply. IEEE Transactions on Power Electronics, 17:669–676, 2002.
[21]M. Lallart and D. Guyomar. An Optimized Self-Powered Switching Circuit for Non-Linear Energy Harvesting with Low Voltage Output. Smart Materials and Structures, 17:035030, 2008.
[22]D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard. Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 52:584–595, 2005.
[23]Y. C. Shu and I. C. Lien. Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15:1499-1512, 2006.
[24]Y. C. Shu and I. C. Lien. Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering, 16:2429-2438, 2006.
[25]D. Guyomar, A. Badel and E. Lefeuvre. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52:584-595, 2005.
[26]A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard and D. Guyomar. Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53:673-684, 2006.
[27]E. Lefeuvre, A. Badel, C. Richard, L. Petit and D. Guyomar. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors Actuators A, 126:405-416, 2006.
[28]A. Badel, D. Guyomar, E. Lefeuvre and C. Richard. Piezoelectric Energy Harvesting using a Synchronized Switch Technique. Journal of Intelligent Materials Systems and Structures, 17:831-839, 2006.
[29]A. Badel, D. Guyomar, E. Lefeuvre and C. Richard. Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion. Journal of Intelligent Materials Systems and Structures, 16:889-901, 2005.
[30]I. C. Lien, Y. C. Shu, W. J. Wu, S. M. Shiu and H. C. Lin. Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting. Smart Materials and Structures, 19:125009, 2010.
[31]Y. C. Shu, I. C. Lien and W. J. Wu. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16:2253-2264, 2007.
[32]E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar. Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction. Journal of Intelligent Material Systems and Structures, 16:865–876, 2005.
[33]W. Q. Liu, A. Badel, F. Formosa, Y. P. Wu, and A. Agbossou. Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester. Smart Materials and Structures, 22:125038, 2013.
[34]H. Shen, J. Qiu, H. Ji, K. Zhu, and M. Balsi. Enhanced synchronized switch harvesting: A New Energy Harvesting Scheme for Efficient Energy Extraction. Smart Materials and Structures, 19:115017, 2010.
[35]Y. Wu, A. Badel, F. Formosa, W. Liu, and A. E. Agbossou. Self-Powered Optimized Synchronous Electric Charge Extraction Circuit for Piezoelectric Energy Harvesting. Journal of Intelligent Material Systems and Structures, 25:2165–2176, 2014.
[36]M. Lallart, L. Garbuio, L. Petit, C. Richard and D. Guyomar. Double Synchronized Switch Harvesting (DSSH): A New Energy Harvesting Scheme for Efficient Energy Extraction. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 55:2119–2130, 2008.
[37]Y. Wu, A. Badel, F. Formosa, W. Liu, and A. E. Agbossou. Piezoelectric Vibration Energy Harvesting by Optimized Synchronous Electric Charge Extraction. Journal of Intelligent Material Systems and Structures, 24:1445–1458, 2013.
[38]S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright and V. Sundararajan. Improving power output for vibration-based energy scavengers. PERVASIVE computing, pp. 28-35, 2005.
[39]H. Wu, L. Tang, Y. Yang and C. K. Soh. A novel two-degrees-of-freedom piezoelectric energy harvester. Journal of Intelligent Material Systems and Structures, 24:357-368, 2012.
[40]W. Zhou, G. R. Penamalli and L. Zuo. An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Materials and Structures, 21:015014, 2012.
[41]F. Cottone, L. Gammaitoni and H. Vocca. Nonlinear energy harvesting. Physical Review Letters, 102:080601, 2009.
[42]A. Triplett and D. D. Quinn. The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 20:1959-1967, 2009.
[43]A. Erturk, J. M. Renno and D. J. Inman. Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs. Journal of Intelligent Material Systems and Structures, 20:529-544, 2009.
[44]A. M. Wickenheiser and E. Garcia. Broadband vibration-based energy harvesting improvement through harvesting improvement through excitation. Smart Materials and Structures, 19:065020, 2010.
[45]S. M. Shahruz. Design of mechanical band-pass filters with large frequency bands for energy scavenging. Mechatronics, 16:523-531, 2006.
[46]M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli and A. Taroni. Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensors Actuators A, 142:329-335, 2008.
[47]W. Al-Ashtari, M. Hunstig, T. Hemsel and W. Sextro. Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments. Sensors and Actuators A: Physical, 200:138-146, 2013.
[48]D. Castagnetti. Experimental modal analysis of fractal-inspired multi-frequency structures for piezoelectric energy converters. Smart Materials and Structures, 21:094009, 2012.
[49]P. H. Wu and Y. C. Shu. Finite element modeling of electrically rectified piezoelectric energy harvesters. Smart Materials and Structures, 24:094008, 2015.
[50]I. C. Lien and Y. C. Shu. Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Materials and Structures, 21:082001, 2012.
[51]H. C. Lin, P. H. Wu, I. C. Lien and Y. C. Shu. Analysis of an array of piezoelectric energy harvesters connected in series. Smart Materials and Structures, 22:094026, 2013.
[52]I. C. Lien and Y. C. Shu. Array of piezoelectric energy harvesters. Im M. N. Ghasemi-Nejhad,editor, Proceedings of SPIE: Active and Passive Smart Structures and Integrated Systems, volume 7977, page 79770K, 2011.
[53]IEEE Standard on Piezoelectricity. IEEE, New York,USA, 1987.
[54]A. Erturk and D. J. Inman. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 130:041002, 2008.
[55]A. Erturk and D. J. Inman. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base wxcitations. Smart Materials and Structures, 18:025009, 2009.
[56]L. Tang and Y. Yang. Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Materials and Structures, 20:085022, 2011.
[57]C. Chen and K. Zhao and J. Liang. Impedance analysis of piezoelectric energy harvesting system using synchronized charge extraction interface circuit. Proc. SPIE, 101642Q:1-10, 2017.
[58]E. Dechant, F. Fedulov, L. Y. Fetisov and M. Shamonin. Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting. Applied sciences, 7:1324, 2017.
[59]P. H. Wu and Y. C. Shu. Wideband energy harvesting by multiple piezoelectric oscillators with an SECE interface. ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2015-8862, 2015.
[60]吳秉憲, ‘‘發展同步電荷萃取介面電路之陣列式壓電振動能量擷取系統’’ 國立台灣大學工學院應用力學研究所博士論文, in preparation.
[61]連益慶, ‘‘陣列式壓電振動能量擷取系統再不同介面電路下之動態特性分析研究’’, 國立台灣大學工學院應用力學研究所博士論文, 2012.[62]林蕙君, ‘‘串聯陣列式壓電振動子能量擷取系統之分析研究’’, 國立台灣大學工學院應用力學研究所碩士論文, 2012.[63]陳彥禎, ‘‘混合陣列式壓電振子應用於能量擷取之實驗驗證’’ , 國立台灣大學工學院應用力學研究所碩士論文, 2017.[64]趙仁魁, ‘‘串並聯混合陣列壓電能量擷取搭配電感並聯同步切換電路之成效比較’’, 國立台灣大學工學院應用力學研究所碩士論文, 2017.[65]徐仕銘, ‘‘並聯與串聯電感同步切換開關介面電路應用於壓電振動能量擷取之研究’’, 國立台灣大學工學院應用力學研究所碩士論文, 2010.