(54.236.58.220) 您好!臺灣時間:2021/03/08 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林政廷
研究生(外文):Jeng-Ting Lin
論文名稱:陣列式壓電能量擷取於同步電荷提取電路架構下之實驗研究
論文名稱(外文):The Experimental Study of an Array of Piezoelectric Energy Oscillators Attached to the Synchronized Electric Charge Extraction Interface Circuit
指導教授:舒貽忠
指導教授(外文):Yi-Chung Shu
口試委員:黃育熙林哲宇
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:132
中文關鍵詞:壓電振動能量擷取陣列式壓電系統同步電荷提取電路阻抗匹配分析功率比較中弱力電耦合強度
DOI:10.6342/NTU201902356
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討壓電材料性質屬中弱力電耦合強度下,陣列式壓電能量擷取系統搭配同步電荷提取電路(Synchronized Electric Charge Extraction circuit, SECE)後的成效,以實驗驗證及展示結果,並與陣列式壓電能量擷取系統搭配標準電路(Standard circuit, STD)作比較,以及陣列式與非陣列式系統皆搭配同步電荷提取電路之差異性。我們首先以理論假設以及模擬分析得知此模型的適用範圍,並發現陣列式搭配SECE電路之擷取功率較標準電路與單一振子的架構皆有明顯提升,且頻寬亦有效地增加,此外,將不需考慮阻抗匹配的問題。緊接著經由實驗來分析系統的力學行為與電路特性,我們使用了四根中力電耦合強度之壓電振子材料作為陣列式系統,並搭配兩種不同電路(SECE與STD),最後實驗結果顯示,與理論所預測的趨勢相符,而隨著負載阻抗的改變,搭配SECE系統之擷取功率相較於標準電路,明顯變化較小,且不論是頻寬、平均功率與最大輸出功率,皆屬陣列式壓電系統搭配同步電荷提取電路有較優良成效。
The dissertation has developed an experimental setup for studying energy harvesting extracted from an array of piezoelectric oscillators attached to an SECE (synchronized electric charge extraction) interface circuit. The proposed device consists of 4 piezoelectric oscillators connected in parallel, in series or in mixed arrangements. Each of them is chosen to be in the range of middle of electromechanical coupling since harvested power based on the SECE technique is higher than that based on the standard interface circuit within this range. The experimental results agree quite well with the theoretical predictions. They confirm the superiority of the array based on the SECE circuit over the standard circuit. In addition, the load-independent property is observed to be retained in the array system. Finally, the overall bandwidth of an SECE array is also improved in comparison with that attached to the standard circuit.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 xi
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 論文架構 6
Chapter 2 壓電能量擷取系統之模型與理論 7
2.1 壓電效應 7
2.1.1 正壓電效應 7
2.1.2 逆壓電效應 8
2.2 壓電材料之組成律 9
2.3 壓電振子懸臂樑模型下之數學理論 11
2.3.1 雙層壓電懸臂樑力學分析 13
2.3.2 雙層壓電懸臂樑電學分析 17
2.4 壓電能量擷取系統之等效電路 20
2.5 壓電懸臂樑搭配標準電路系統之分析 23
2.6 壓電懸臂樑搭配同步電荷提取電路系統之分析 28
2.6.1 壓電振子搭配同步電荷提取電路系統之理論 32
2.6.2 壓電振子搭配同步電荷提取電路之系統損失 35
Chapter 3 陣列式壓電能量擷取系統之模型分析 38
3.1 陣列式壓電能量擷取搭配標準電路架構之分析 39
3.2 陣列式壓電能量擷取搭配同步電荷提取電路之分析 51
3.2.1 陣列式壓電能量擷取搭配同步電荷提取電路之理論 51
3.2.2 陣列式壓電能量擷取搭配同步電荷提取電路之系統損失 62
Chapter 4 陣列式壓電能量擷取搭配同步電荷提取電路之參數分析與模擬驗證 65
4.1 不同力電耦合強度下之參數分析 70
4.1.1 強-力電耦合之壓電能量擷取系統比較 70
4.1.2 中-力電耦合之壓電能量擷取系統比較 73
4.1.3 弱-力電耦合之壓電能量擷取系統比較 75
4.2 陣列式壓電能量擷取搭配SECE電路之模擬分析 79
Chapter 5 實驗驗證與分析 96
5.1 實驗架構與儀器設備 97
5.2 實驗流程 103
5.2.1 壓電材料參數 103
5.2.2 實驗之訊號量測系統 103
5.2.3 陣列式壓電能量擷取系統之實驗流程 105
5.3 實驗結果與討論 109
Chapter 6 結論與未來展望 121
6.1 結論 121
6.2 未來展望 124
REFERENCE 125
[1]S. Roundy, D. Steingart, L. Frechette, P. Wright and J. Rabaey. Power source for wireless sensor networks.Lecture Notes in Computer Science, 2920:1-17, 2004.
[2]F. Akhtar and M. H. Rehmani. Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable and Sustainable Energy Reviews, 45:769-784, 2015.
[3]S. P. Beeby, M. J. Tudor and N. M. White. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17:R175-R195, 2006.
[4]R. J. M. Vullers, R. V. Schaijk, I. Doms, C. V. Hoof and R. Mertens. Micropower energy harvesting. Solid-State Electronics, 53:684-693, 2009.
[5]S. Cheng, N. Wang and D. P. Arnold. Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. Journal of Micromechanics and Microengineering, 17:2328-2335, 2007.
[6]Y. Chiu and V. F. G. Tseng. A capacitive vibration-to-electricity energy converter with integrated mechanical switches. Journal of Micromechanics and Microengineering, 18:104004, 2008.
[7]S. Roundy, P. K. Wright and J. Rabaey. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26:1131-1144, 2003.
[8]E. E. Aktakka and K. Najafi. A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE Journal of Solid-State Circuit, 49:2017-2029, 2014.
[9]N. Shenck, A Demonstration of Useful Electric Energy Generation from Piezoceramics in a Shoe, MS thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Mass., 1999.
[10]N. S. Shenck and J. A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro, 21:30-42, 2001.
[11]T. H. Ng and W. H. Liao. Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor. Journal of Intelligent Materials Systems and Structures, 16:785-797, 2005.
[12]N. G. Elvin, A. A. Elvin and M. Spector. A self-powered mechanical strain energy sensor. Smart Materials and Structures, 10:293-299, 2001.
[13]N. W. Hagood, W. H. Chung and A. V. Flotow. Modeling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct, 1:327-354, 1990.
[14]C. J. Rupp, A. Evgrafov, K. Maute and M. L. Dunn. Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells. Journal of Intelligent Material Systems and Structures, 20:1923–1939, 2009.
[15]W. Zhou, G. R. Penamalli and L. Zuo. An Efficient Vibration Energy Harvester with a Multi- Mode Dynamic Magnifier. Smart Materials and Structures, 21:015014, 2012.
[16]T. Seuaciuc-Osorio and M. F. Daqaq. On the Reduced-Order Modeling of Energy Harvesters. Journal of Intelligent Material Systems and Structures, 20:2003–2016, 2009.
[17]J. L. Kauffman and G. A. Lesieutre. A Low- Order Model for the Design of Piezoelectric Energy Harvesting Devices. Journal of Intelligent Material Systems and Structures, 20:495–504, 2009.
[18]A. Erturk and D. J. Inman. Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures, 17:065016, 2008.
[19]A. M. Wickenheiser and E. Garcia. Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits. Journal of Intelligent Material Systems and Structures, 21:1343–1361, 2010.
[20]G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre. Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply. IEEE Transactions on Power Electronics, 17:669–676, 2002.
[21]M. Lallart and D. Guyomar. An Optimized Self-Powered Switching Circuit for Non-Linear Energy Harvesting with Low Voltage Output. Smart Materials and Structures, 17:035030, 2008.
[22]D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard. Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 52:584–595, 2005.
[23]Y. C. Shu and I. C. Lien. Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15:1499-1512, 2006.
[24]Y. C. Shu and I. C. Lien. Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering, 16:2429-2438, 2006.
[25]D. Guyomar, A. Badel and E. Lefeuvre. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52:584-595, 2005.
[26]A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard and D. Guyomar. Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53:673-684, 2006.
[27]E. Lefeuvre, A. Badel, C. Richard, L. Petit and D. Guyomar. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors Actuators A, 126:405-416, 2006.
[28]A. Badel, D. Guyomar, E. Lefeuvre and C. Richard. Piezoelectric Energy Harvesting using a Synchronized Switch Technique. Journal of Intelligent Materials Systems and Structures, 17:831-839, 2006.
[29]A. Badel, D. Guyomar, E. Lefeuvre and C. Richard. Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion. Journal of Intelligent Materials Systems and Structures, 16:889-901, 2005.
[30]I. C. Lien, Y. C. Shu, W. J. Wu, S. M. Shiu and H. C. Lin. Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting. Smart Materials and Structures, 19:125009, 2010.
[31]Y. C. Shu, I. C. Lien and W. J. Wu. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16:2253-2264, 2007.
[32]E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar. Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction. Journal of Intelligent Material Systems and Structures, 16:865–876, 2005.
[33]W. Q. Liu, A. Badel, F. Formosa, Y. P. Wu, and A. Agbossou. Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester. Smart Materials and Structures, 22:125038, 2013.
[34]H. Shen, J. Qiu, H. Ji, K. Zhu, and M. Balsi. Enhanced synchronized switch harvesting: A New Energy Harvesting Scheme for Efficient Energy Extraction. Smart Materials and Structures, 19:115017, 2010.
[35]Y. Wu, A. Badel, F. Formosa, W. Liu, and A. E. Agbossou. Self-Powered Optimized Synchronous Electric Charge Extraction Circuit for Piezoelectric Energy Harvesting. Journal of Intelligent Material Systems and Structures, 25:2165–2176, 2014.
[36]M. Lallart, L. Garbuio, L. Petit, C. Richard and D. Guyomar. Double Synchronized Switch Harvesting (DSSH): A New Energy Harvesting Scheme for Efficient Energy Extraction. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 55:2119–2130, 2008.
[37]Y. Wu, A. Badel, F. Formosa, W. Liu, and A. E. Agbossou. Piezoelectric Vibration Energy Harvesting by Optimized Synchronous Electric Charge Extraction. Journal of Intelligent Material Systems and Structures, 24:1445–1458, 2013.
[38]S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright and V. Sundararajan. Improving power output for vibration-based energy scavengers. PERVASIVE computing, pp. 28-35, 2005.
[39]H. Wu, L. Tang, Y. Yang and C. K. Soh. A novel two-degrees-of-freedom piezoelectric energy harvester. Journal of Intelligent Material Systems and Structures, 24:357-368, 2012.
[40]W. Zhou, G. R. Penamalli and L. Zuo. An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Materials and Structures, 21:015014, 2012.
[41]F. Cottone, L. Gammaitoni and H. Vocca. Nonlinear energy harvesting. Physical Review Letters, 102:080601, 2009.
[42]A. Triplett and D. D. Quinn. The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 20:1959-1967, 2009.
[43]A. Erturk, J. M. Renno and D. J. Inman. Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs. Journal of Intelligent Material Systems and Structures, 20:529-544, 2009.
[44]A. M. Wickenheiser and E. Garcia. Broadband vibration-based energy harvesting improvement through harvesting improvement through excitation. Smart Materials and Structures, 19:065020, 2010.
[45]S. M. Shahruz. Design of mechanical band-pass filters with large frequency bands for energy scavenging. Mechatronics, 16:523-531, 2006.
[46]M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli and A. Taroni. Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensors Actuators A, 142:329-335, 2008.
[47]W. Al-Ashtari, M. Hunstig, T. Hemsel and W. Sextro. Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments. Sensors and Actuators A: Physical, 200:138-146, 2013.
[48]D. Castagnetti. Experimental modal analysis of fractal-inspired multi-frequency structures for piezoelectric energy converters. Smart Materials and Structures, 21:094009, 2012.
[49]P. H. Wu and Y. C. Shu. Finite element modeling of electrically rectified piezoelectric energy harvesters. Smart Materials and Structures, 24:094008, 2015.
[50]I. C. Lien and Y. C. Shu. Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Materials and Structures, 21:082001, 2012.
[51]H. C. Lin, P. H. Wu, I. C. Lien and Y. C. Shu. Analysis of an array of piezoelectric energy harvesters connected in series. Smart Materials and Structures, 22:094026, 2013.
[52]I. C. Lien and Y. C. Shu. Array of piezoelectric energy harvesters. Im M. N. Ghasemi-Nejhad,editor, Proceedings of SPIE: Active and Passive Smart Structures and Integrated Systems, volume 7977, page 79770K, 2011.
[53]IEEE Standard on Piezoelectricity. IEEE, New York,USA, 1987.
[54]A. Erturk and D. J. Inman. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 130:041002, 2008.
[55]A. Erturk and D. J. Inman. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base wxcitations. Smart Materials and Structures, 18:025009, 2009.
[56]L. Tang and Y. Yang. Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Materials and Structures, 20:085022, 2011.
[57]C. Chen and K. Zhao and J. Liang. Impedance analysis of piezoelectric energy harvesting system using synchronized charge extraction interface circuit. Proc. SPIE, 101642Q:1-10, 2017.
[58]E. Dechant, F. Fedulov, L. Y. Fetisov and M. Shamonin. Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting. Applied sciences, 7:1324, 2017.
[59]P. H. Wu and Y. C. Shu. Wideband energy harvesting by multiple piezoelectric oscillators with an SECE interface. ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2015-8862, 2015.
[60]吳秉憲, ‘‘發展同步電荷萃取介面電路之陣列式壓電振動能量擷取系統’’ 國立台灣大學工學院應用力學研究所博士論文, in preparation.
[61]連益慶, ‘‘陣列式壓電振動能量擷取系統再不同介面電路下之動態特性分析研究’’, 國立台灣大學工學院應用力學研究所博士論文, 2012.
[62]林蕙君, ‘‘串聯陣列式壓電振動子能量擷取系統之分析研究’’, 國立台灣大學工學院應用力學研究所碩士論文, 2012.
[63]陳彥禎, ‘‘混合陣列式壓電振子應用於能量擷取之實驗驗證’’ , 國立台灣大學工學院應用力學研究所碩士論文, 2017.
[64]趙仁魁, ‘‘串並聯混合陣列壓電能量擷取搭配電感並聯同步切換電路之成效比較’’, 國立台灣大學工學院應用力學研究所碩士論文, 2017.
[65]徐仕銘, ‘‘並聯與串聯電感同步切換開關介面電路應用於壓電振動能量擷取之研究’’, 國立台灣大學工學院應用力學研究所碩士論文, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔