跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建佑
研究生(外文):Chien-Yu Chen
論文名稱:以奈米碳管活化過二硫酸鹽催化降解2,4-二氯酚
論文名稱(外文):Catalytic Degradation of 2,4-Dichlorophenol by CNT-activated Peroxydisulfate
指導教授:林逸彬
指導教授(外文):Yi-Pin Lin
口試委員:駱尚廉侯嘉洪
口試委員(外文):Shang-Lien LoChia-Hung Hou
口試日期:2019-01-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:80
中文關鍵詞:過硫酸鹽氯酚奈米碳管催化降解表面自由基非自由基
DOI:10.6342/NTU201900233
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來,碳基非金屬催化劑因其優異的有機汙染物去除能力而在高級氧化程序中受到廣泛注目。此研究以奈米碳管活化過二硫酸鹽去除2,4-二氯酚,並探究其中的反應機制及奈米碳管扮演之角色。在控制組的二元系統中,過二硫酸鹽無法單獨直接氧化2,4-二氯酚,而過二硫酸鹽及2,4-二氯酚皆能吸附至奈米碳管表面。在過二硫酸鹽/2,4-二氯酚/奈米碳管的三元系統中,2,4-二氯酚的降解速率會隨過二硫酸鹽、2,4-二氯酚、奈米碳管的量及pH增加而加快,但在含有超過100 μM的過二硫酸鹽及20 μM的2,4-二氯酚的反應溶液中此降解速率會趨緩。在奈米碳管重複使用的實驗中,有75%的2,4-二氯酚在第一輪反應中降解,但在第二、三輪中都只有約21%的2,4-二氯酚降解。奈米碳管活化過二硫酸鹽之可能途徑有三:游離自由基、表面自由基及非自由基機制。自由基清除實驗及電子順磁共振光譜儀證實游離自由基並非主要之過二硫酸鹽活化產物,顯示奈米碳管之表面自由基及非自由基機制可能為2,4-二氯酚降解的主要機制且發現奈米碳管本身在此催化降解過程中也會消耗自由基。X射線光電子能譜儀也在此研究中被應用於反應前後的奈米碳管,結果指出2,4-二氯酚降解所造成奈米碳管之氯化,來自於表面自由基氧化2,4-二氯酚所產生之含氯芳香族自由基的自由基加成反應造成,而非自由基機制可造成約24%的2,4-二氯酚降解。
Metal-free carbon catalysts have drawn extensive attentions for the removal of recalcitrant organic pollutants in advanced oxidation processes (AOPs). In this research, pristine carbon nanotubes (pCNT) was employed to activate peroxydisulfate (PDS) for the removal of 2,4-dichlorophenol (DCP). In control experiments using dual-compound systems (PDS/DCP, pCNT/PDS and pCNT/DCP), PDS hardly oxidized DCP directly and both PDS or DCP could adsorb onto pCNT surfaces. The effects of PDS dosage, DCP dosage, pCNT loading and pH were investigated in the PDS/DCP/pCNT system. The DCP degradation rate increased with increasing PDS, DCP, pCNT and pH but gradually slowed down in the presence of over 100 μM PDS or 20 μM DCP. In the evaluation of service time of pCNT, the PDS/DCP/pCNT system showed 75% DCP degradation in the 1st cycle and 21% in both the 2nd and 3rd cycles. There are three possible PDS activation mechanisms for the degradation of DCP, including free radical oxidation, surface-bound radical oxidation and non-radical oxidation in the PDS/DCP/pCNT system. The results obtained from radical scavenging experiments and electron paramagnetic resonance (EPR) tests indicated that the surface reactions including surface-bound radicals and the non-radical mechanism instead of aqueous free radicals were responsible for DCP degradation. In addition, CNT was found to act not only as the PDS activator but also the radical scavenger. X-ray photoelectron spectroscope (XPS) was applied to CNTs to determine the element content before and after reactions. The results suggested that the chlorination of CNT resulted from chlorine-aryl radical addition induced by surface-bound radicals via non-reusable active sites and 24% of DCP degradation could be attributed to non-radical mechanism.
摘要 …….......................................................................................................................... I
Abstract …….................................................................................................................... II
Content …….................................................................................................................... IV
List of figures ……......................................................................................................... VII
List of tables ……............................................................................................................. X
Chapter 1 Introduction ……………………………………………………………………………………..……..… 1
1.1 Background …………………………………………………………………………….………..……..… 1
1.2 Research objectives ……………………………………………………………….………..……….… 2
1.3 Research hypothesis ……………………………………………………………….………..………… 2
Chapter 2 Introduction …………………………………………………………………………………..………..… 4
2.1 Chemistry of PDS …………………………………………………………..……………..………..… 4
2.2 Properties of CNT …………………………………………………………..……………..………..… 7
2.3 Activation of PDS by CNT ……………………………………………..……………..………..… 8
Chapter 3 Materials and methods …………………………………………………………………………..… 12
3.1 Chemicals and reagents ………………………………………………………………………….… 12
3.2 Characterization of CNT ………………………………………………………………………..… 12
3.3 Determination of point of zero charge …….……………………………………………...… 13
3.4 Batch experimental procedure ………………………………………………………………..… 14
3.5 EPR spectroscopy …………………………………………………………………………………..… 14
3.6 Analytical methods ………………………………………………………………………………..… 15
Chapter 4 Results and discussion …………………………………………………………………………..… 17
4.1 Characterization of pristine CNT ………………………………………………….………..… 17
4.2 Control experiments: reaction/adsorption in the dual-compound systems of PDS, DCP and pCNT ……………………………………………………………………………..……..… 23
4.3 Influences of PDS dosage, DCP dosage, pCNT loading and pH on the degradation of DCP in the PDS/DCP/pCNT system ……………………………………....… 27
4.3.1 Influence of PDS dosage ……………………………….……………………………....… 27
4.3.2 Influence of DCP dosage ………………………………………………….…………....… 29
4.3.3 Influence of pCNT loading …………………………………………………………....… 31
4.3.4 Influence of pH ……………………………………............................................… 33
4.4 Service time of PDS/DCP/pCNT system …………………………………….………....… 35
4.5 Investigation of PDS activation mechanism in PDS/DCP/pCNT system …… 43
4.5.1 Radical scavenging experiments ……………………………………..................… 43
4.5.2 EPR studies …………………………………………………………..……………………....… 49
4.5.3 Investigation of CNT surface …………………………………….......................… 53
Chapter 5 Conclusions and recommendations …………………………………….....................… 59
5.1 Conclusions ……………………………………............................................................… 59
5.2 Recommendations ……………………………………..................................................… 61
References ……………………………………...........................................................................… 63
1.Pera-Titus, M.; Garcia-Molina, V.; Banos, M. A.; Gimenez, J.; Esplugas, S., Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B-Enviorn. 2004, 47, (4), 219-256.
2.Zhou, T.; Li, Y. Z.; Wong, F. S.; Lu, X. H., Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance. Ultrason. Sonochem. 2008, 15, (5), 782-790.
3.Chaliha, S.; Bhattacharyya, K. G., Fe(III)-, Co(II)- and Ni(II)-impregnated MCM41 for wet oxidative destruction of 2,4-dichlorophenol in water. Cataly. Today 2009, 141, (1-2), 225-233.
4.Li, R.; Jin, X.; Megharaj, M.; Naidu, R.; Chen, Z., Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chem. Eng. J. 2015, 264, 587-594.
5.Muhamad, M. H.; Sheikh Abdullah, S. R.; Mohamad, A. B.; Abdul Rahman, R.; Hasan Kadhum, A. A., Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR). J. Environ. Manage. 2013, 121, 179-90.
6.Abeish, A. M.; Ang, H. M.; Znad, H., Solar photocatalytic degradation of chlorophenols mixture (4-CP and 2,4-DCP): Mechanism and kinetic modelling. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2015, 50, (2), 125-34.
7.Ru-Ling, T.; Wu, K. T.; Wu, F. C.; Juang, R. S., Kinetic studies on the adsorption of phenol, 4-chlorophenol, and 2,4-dichlorophenol from water using activated carbons. J. Environ. Manage. 2010, 91, (11), 2208-2214.
8.Wang, Y.; Sun, H.; Ang, H. M.; Tadé, M. O.; Wang, S., 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Appl. Catal. B-Enviorn. 2015, 164, 159-167.
9.Duan, X.; Sun, H.; Wang, Y.; Kang, J.; Wang, S., N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. Acs Catal. 2014, 5, (2), 553-559.
10.Zhou, D.; Zhang, H.; Chen, L., Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies. J. Chem. Technol. Biotechnol. 2015, 90, (5), 775-779.
11.Liang, C.; Lee, I. L., In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study. J. Contam. Hydrol. 2008, 100, (3-4), 91-100.
12.Lee, H.; Lee, H.-J.; Jeong, J.; Lee, J.; Park, N.-B.; Lee, C., Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chem. Eng. J. 2015, 266, 28-33.
13.Neta, P.; Huie, R. E.; Ross, A. B., Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, (3), 1027-1284.
14.Waldemer, R. H.; Tratnyek, P. G.; Johnson, R. L.; Nurmi, J. T., Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ. Sci. Technol. 2007, 41, (3), 1010-5.
15.Liu, Y. K.; Wang, S. Y.; Wu, Y. L.; Chen, H. C.; Shi, Y. H.; Liu, M.; Dong, W. B., Degradation of ibuprofen by thermally activated persulfate in soil systems. Chem. Eng. J. 2019, 356, 799-810.
16.Liu, J.; Zhong, S.; Song, Y.; Wang, B.; Zhang, F., Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. J. Electroanal. Chem. 2018, 809, 74-79.
17.Furman, O. S.; Teel, A. L.; Watts, R. J., Mechanism of base activation of persulfate. Environ. Sci. Technol. 2010, 44, (16), 6423-8.
18.Antoniou, M. G.; Boraei, I.; Solakidou, M.; Deligiannakis, Y.; Abhishek, M.; Lawton, L. A.; Edwards, C., Enhancing photocatalytic degradation of the cyanotoxin microcystin-LR with the addition of sulfate-radical generating oxidants. J. Hazard Mater. 2018, 360, 461-470.
19.Fu, Y. Y.; Gao, X. S.; Geng, J. J.; Li, S. L.; Wu, G.; Ren, H. Q., Degradation of three nonsteroidal anti-inflammatory drugs by UV/persulfate: Degradation mechanisms, efficiency in effluents disposal. Chem. Eng. J. 2019, 356, 1032-1041.
20.Ferkous, H.; Merouani, S.; Hamdaoui, O.; Petrier, C., Persulfate-enhanced sonochemical degradation of naphthol blue black in water: Evidence of sulfate radical formation. Ultrason. Sonochem. 2017, 34, 580-587.
21.Anipsitakis, G. P.; Dionysiou, D. D.; Gonzalez, M. A., Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions. Environ. Sci. Technol. 2006, 40, (3), 1000-7.
22.Qi, C.; Yu, G.; Huang, J.; Wang, B.; Wang, Y.; Deng, S., Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation. Chem. Eng. J. 2018, 353, 490-498.
23.Zhao, X.; Niu, C.; Zhang, L.; Guo, H.; Wen, X.; Liang, C.; Zeng, G., Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate. Chemosphere 2018, 204, 11-21.
24.Shi, C.; Li, Y.; Feng, H.; Jia, S.; Xue, R.; Li, G.; Wang, G., Removal of p-nitrophenol using persulfate activated by biochars prepared from different biomass materials. Chem. Res. Chin. Univ. 2017, 34, (1), 39-43.
25.Wang, J.; Liao, Z.; Ifthikar, J.; Shi, L.; Du, Y.; Zhu, J.; Xi, S.; Chen, Z.; Chen, Z., Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process. Chemosphere 2017, 185, 754-763.
26.Cheng, X.; Guo, H.; Zhang, Y.; Liu, Y.; Liu, H.; Yang, Y., Oxidation of 2,4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes. J. Colloid Interface Sci. 2016, 469, 277-286.
27.Cheng, X.; Guo, H.; Zhang, Y.; Wu, X.; Liu, Y., Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res.. 2017, 113, 80-88.
28.Liang, C. J.; Lee, I. L., In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination - A proof of concept study. J. Contam. Hydrol. 2008, 100, (3-4), 91-100.
29.Wang, J. L.; Wang, S. Z., Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502-1517.
30.Chen, X.; Oh, W. D.; Lim, T. T., Graphene- and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms. Chem. Eng. J. 2018, 354, 941-976.
31.Duan, X. G.; Ao, Z. M.; Sun, H. Q.; Zhou, L.; Wang, G. X.; Wang, S. B., Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study. Chem. Commun. 2015, 51, (83), 15249-15252.
32.Watts, R. J.; M.ASCE; Teel, A. L., Treatments of contaminated soils and geoundwater using ISCO. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2006, 10, 2-9.
33.Duan, L.; Sun, B.; Wei, M.; Luo, S.; Pan, F.; Xu, A.; Li, X., Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation. J. Hazard Mater. 2015, 285, 356-65.
34.Zhou, Y.; Xiang, Y.; He, Y.; Yang, Y.; Zhang, J.; Luo, L.; Peng, H.; Dai, C.; Zhu, F.; Tang, L., Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. J. Hazard. Mater. 2018, 359, 396-407.
35.Guan, C. T.; Jiang, J.; Luo, C. W.; Pang, S. Y.; Yang, Y.; Wang, Z.; Ma, J.; Yu, J.; Zhao, X., Oxidation of bromophenols by carbon nanotube activated peroxymonosulfate (PMS) and formation of brominated products: Comparison to peroxydisulfate (PDS). Chem. Eng. J. 2018, 337, 40-50.
36.Fang, G.; Gao, J.; Dionysiou, D. D.; Liu, C.; Zhou, D., Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environ. Sci. Technol. 2013, 47, (9), 4605-11.
37.Wang, D. Y.; Cheng, L. R.; Wang, M. M.; Zhang, X. Z.; Xue, D.; Zhuo, W. J.; Zheng, L.; Ding, A. Z., The performance of a sulfate-radical mediated advanced oxidation process in the degradation of organic matter from secondary effluents. Environ. Sci.: Water Res. Technol. 2018, 4, (6), 773-782.
38.Indrawirawan, S.; Sun, H. Q.; Duan, X. G.; Wang, S. B., Nanocarbons in different structural dimensions (0-3D) for phenol adsorption and metal-free catalytic oxidation. Appl. Catal. B-Enviorn. 2015, 179, 352-362.
39.Duan, X. G.; Sun, H. Q.; Kang, J.; Wang, Y. X.; Indrawirawan, S.; Wang, S. B., Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. Acs Catal. 2015, 5, (8), 4629-4636.
40.Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354, (6348), 56-58.
41.Lehman, J. H.; Terrones, M.; Mansfield, E.; Hurst, K. E.; Meunier, V., Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49, (8), 2581-2602.
42.Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, (5453), 637-40.
43.Majumder, M.; Chopra, N.; Hinds, B. J., Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 2011, 5, (5), 3867-77.
44.Luo, Z.; Oki, A.; Carson, L.; Adams, L.; Neelgund, G.; Soboyejo, N.; Regisford, G.; Stewart, M.; Hibbert, K.; Beharie, G.; Kelly-Brown, C.; Traisawatwong, P., Thermal stability of functionalized carbon nanotubes studied by in-situ transmission electron microscopy. Chem. Phys. Lett. 2011, 513, (1-3), 88-93.
45.Liu, X. W.; Chen, J. J.; Huang, Y. X.; Sun, X. F.; Sheng, G. P.; Li, D. B.; Xiong, L.; Zhang, Y. Y.; Zhao, F.; Yu, H. Q., Experimental and theoretical demonstrations for the mechanism behind enhanced microbial electron transfer by CNT network. Sci. Rep. 2014, 4, 3732.
46.Duan, X. G.; Ao, Z. M.; Zhou, L.; Sun, H. Q.; Wang, G. X.; Wang, S. B., Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B-Enviorn. 2016, 188, 98-105.
47.Sun, H. Q.; Kwan, C.; Suvorova, A.; Ang, H. M.; Tade, M. O.; Wang, S. B., Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Appl. Catal. B-Environ. 2014, 154, 134-141.
48.Duan, X. G.; Sun, H. Q.; Wang, Y. X.; Kang, J.; Wang, S. B., N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. Acs Catal. 2015, 5, (2), 553-559.
49.Hess, W. P.; Tully, F. P., Hydrogen-atom abstraction from methanol by hydroxyl radical. J. Phys. Chem. 1989, 93, (5), 1944–1947.
50.Liu, D. P.; Khaled, F.; Giri, B. R.; Assaf, E.; Fittschen, C.; Farooq, A., H-abstraction by OH from large branched alkanes: overall rate measurements and site-specific tertiary rate calculations. J. Phys. Chem. A 2017, 121, (5), 927-937.
51.Peyton, G. R., The free-radical chemistry of persulfate-based total organic-carbon analyzers. Mar. Chem. 1993, 41, (1-3), 91-103.
52.Raghavan, N. V.; Steenken, S., Electrophilic reaction of the hydroxyl radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals. J. Am. Chem. Soc. 1980, 102, (10), 3495–3499.
53.Tully, F. P.; Ravishankara, A. R.; Thompson, R. L.; Nicovich, J. M.; Shah, R. C.; Kreutter, N. M.; Wine, P. H., Kinetics of the reactions of hydroxyl radical with benzene and toluene. J. Phys. Chem. 1981, 85, (15), 2262-2269.
54.Mokudai, T.; Nakamura, K.; Kanno, T.; Niwano, Y., Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed water. PLoS One 2012, 7, (9), e46392.
55.Kallikragas, D. T.; Plugatyr, A. Y.; Svishchev, I. M., High temperature diffusion coefficients for O2, H2, and OH in water, and for pure water. J. Chem. Eng. Data 2014, 59, (6), 1964-1969.
56.Lian, L.; Yao, B.; Hou, S.; Fang, J.; Yan, S.; Song, W., Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents. Environ. Sci. Technol. 2017, 51, (5), 2954-2962.
57.Neta, P.; Madhavan, V.; Zemel, H.; Fessenden, R. W., Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. J. Am. Chem. Soc. 1976, 99, (1), 163-164.
58.Zhou, D. N.; Zhang, H.; Chen, L., Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies? J. Chem. Technol. Biotechnol. 2015, 90, (5), 775-779.
59.Wang, P.; Xiao, P. Y.; Zhong, S. X.; Chen, J. R.; Lin, H. J.; Wu, X. L., Bamboo-like carbon nanotubes derived from colloidal polymer nanoplates for efficient removal of bisphenol A. J. Mater Chem. A 2016, 4, (40), 15450-15456.
60.Chen, J.; Zhang, L.; Huang, T.; Li, W.; Wang, Y.; Wang, Z., Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: Radical versus non-radical mechanism. J. Hazard. Mater. 2016, 320, 571-580.
61.Anipsitakis, G. P.; Dionysiou, D. D.; Gonzalez, M. A., Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions. Environ. Sci. Technol. 2006, 40, (3), 1000-7.
62.Duan, X. G.; Sun, H. Q.; Shao, Z. P.; Wang, S. B., Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Appl. Catal. B-Enviorn. 2018, 224, 973-982.
63.Wang, Y.; Zhou, L.; Duan, X.; Sun, H.; Tin, E. L.; Jin, W.; Wang, S., Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals. Cataly. Today 2015, 258, 576-584.
64.Chen, X.; Oh, W. D.; Hu, Z. T.; Sun, Y. M.; Webster, R. D.; Li, S. Z.; Lim, T. T., Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes. Appl. Catal. B-Enviorn. 2018, 225, 243-257.
65.Yun, E. T.; Yoo, H. Y.; Bae, H.; Kim, H. I.; Lee, J., Exploring the role of persulfate in the activation process: radical precursor versus electron acceptor. Environ. Sci. Technol. 2017, 51, (17), 10090-10099.
66.Yun, E. T.; Lee, J. H.; Kim, J.; Park, H. D.; Lee, J., Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer. Environ. Sci. Technol. 2018, 52, (12), 7032-7042.
67.Lee, H.; Kim, H. I.; Weon, S.; Choi, W.; Hwang, Y. S.; Seo, J.; Lee, C.; Kim, J. H., Activation of persulfates by graphitized nanodiamonds for removal of organic compounds. Environ. Sci. Technol. 2016, 50, (18), 10134-42.
68.Duan, X.; Sun, H.; Shao, Z.; Wang, S., Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Appl. Catal. B-Enviorn. 2018, 224, 973-982.
69.Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J. H.; Balzano, L.; Resasco, D. E., Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 2003, 107, 13357-13367.
70.Liang, C.; Huang, C. F.; Mohanty, N.; Kurakalva, R. M., A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 2008, 73, (9), 1540-3.
71.Iijima, S.; Ichihashi, T.; Ando, Y., Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 1992, 356, (6372), 776-778.
72.Maultzsch, J.; Reich, S.; Thomsen, C., Chirality-selective Raman scattering of the D mode in carbon nanotubes. Phys. Rev., B Condens. Matter 2001, 64, (12).
73.HarithaGangupomu, R.; L.Sattler, M.; DavidRamirez, Comparative study of carbonnanotubes and granular activated carbon: physicochemical properties andadsorption capacities. J. Hazard Mater. 2016, 302, 362-374.
74.Gohil, S.; Ghosh, S., Surface enhanced Raman scattering from multiwalled carbon nanotubes at low temperatures. Appl. Phys. Lett. 2010, 96, (14).
75.Bokobza, L.; Zhang, J., Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett. 2012, 6, (7), 601-608.
76.Nanot, S.; Millot, M.; Raquet, B.; Broto, J. M.; Magrez, A.; Gonzalez, J., Doping dependence of the G-band Raman spectra of an individual multiwall carbon nanotube. Physica. E Low Dimens. Syst. Nanostruct. 2010, 42, (9), 2466-2470.
77.Gao, G. D.; Pan, M. L.; Vecitis, C. D., Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance. J. Mater Chem. A 2015, 3, (14), 7575-7582.
78.Cao, Y. H.; Li, B.; Zhong, G. Y.; Li, Y. H.; Wang, H. J.; Yu, H.; Peng, F., Catalytic wet air oxidation of phenol over carbon nanotubes: Synergistic effect of carboxyl groups and edge carbons. Carbon 2018, 133, 464-473.
79.Guan, C.; Jiang, J.; Pang, S.; Luo, C.; Ma, J.; Zhou, Y.; Yang, Y., Oxidation kinetics of bromophenols by nonradical activation of peroxydisulfate in the presence of carbon nanotube and formation of brominated polymeric products. Environ. Sci. Technol. 2017, 51, (18), 10718-10728.
80.Cheng, X.; Guo, H. G.; Zhang, Y. L.; Liu, Y.; Liu, H. W.; Yang, Y., Oxidation of 2,4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes. J. Colloid. Interface Sci. 2016, 469, 277-286.
81.Yan, S.; Xiong, W.; Xing, S.; Shao, Y.; Guo, R.; Zhang, H., Oxidation of organic contaminant in a self-driven electro/natural maghemite/peroxydisulfate system: Efficiency and mechanism. Sci. Total. Environ. 2017, 599-600, 1181-1190.
82.Yang, B. Y.; Cao, Y.; Qi, F. F.; Li, X. Q.; Xu, Q., Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics. Nanoscale Res. Lett. 2015, 10, 207.
83.Tang, L.; Liu, Y.; Wang, J.; Zeng, G.; Deng, Y.; Dong, H.; Feng, H.; Wang, J.; Peng, B., Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism. Appl. Catal. B-Enviorn. 2018, 231, 1-10.
84.M.E.Lipińska; Rebelo, S. L. H.; Pereira, M. F. R.; Gomes, J. A. N. F.; Freire, C.; Figueiredo, J. L., New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon 2012, 50, (9), 3280-3294.
85.Liu, J.; Zubiri, M. R. I.; Dossot, M.; Vigolo, B.; Hauge, R. H.; Fort, Y.; Ehrhardt, J.-J.; McRae, E., Sidewall functionalization of single-wall carbon nanotubes (SWNTs) through aryl free radical addition. Chem. Phys. Lett 2006, 430, (1-3), 93-96.
86.Yu, H. O.; Zhang, Z. J.; Wang, Z.; Jiang, Z. W.; Liu, J.; Wang, L.; Wan, D.; Tang, T., Double functions of chlorinated carbon nanotubes in its combination with Ni2O3 for reducing flammability of polypropylene. J. Phys. Chem. C 2010, 114, (31), 13226-13233.
87.Jiang, H.; Zhang, D.; Wang, R., Silicon-doped carbon nanotubes: a potential resource for the detection of chlorophenols/chlorophenoxy radicals. Nanotechnology 2009, 20, (14), 145501.
88.Wang, J.; Wang, S., Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502-1517.
89.Ike, I. A.; Linden, K. G.; Orbell, J. D.; Duke, M., Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 2018, 338, 651-669.
90.Liang, C. J.; Su, H. W., Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 2009, 48, (11), 5558-5562.
91.Chen, J.; Zhang, L.; Huang, T.; Li, W.; Wang, Y.; Wang, Z., Decolorization of azo dye by peroxymonosulfate activated by carbonnanotube: Radical versus non-radical mechanism. J. Hazard Mater. 2016 320, 571-580.
92.Cheng, X.; Guo, H.; Zhang, Y.; Wu, X.; Liu, Y., Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res.. 2017, 113, 80-88.
93.Lindsey, M. E.; Tarr, M. A., Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter. Environ. Sci. Technol. 2000, 34, (3), 444–449.
94.Ahmad, M.; Teel, A. L.; Watts, R. J., Mechanism of persulfate activation by phenols. Environ. Sci. Technol. 2013, 47, (11), 5864-71.
95.Ma, J.; Li, H.; Chi, L.; Chen, H.; Chen, C., Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere 2017, 189, 86-93.
96.Liu, R.; Zhang, Y. G., Mechanism of UV-driven Photoelectrocatalytic Degradation of Berberine Chloride Form Using the ESR Spin-trapping Method. Photochem. Photobiol. 2018, 94, (4), 650-658.
97.Wei, Z.; Villamena, F. A.; Weavers, L. K., Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study. Environ. Sci. Technol. 2017, 51, (6), 3410-3417.
98.Zamora, P. L.; Villamena, F. A., Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions. J. Phys. Chem. A 2012, 116, (26), 7210-8.
99.Ouyang, D.; Yan, J.; Qian, L.; Chen, Y.; Han, L.; Su, A.; Zhang, W.; Ni, H.; Chen, M., Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate. Chemosphere 2017, 184, 609-617.
100.Zhu, X. D.; Liu, Y. C.; Zhou, C.; Luo, G.; Zhang, S. C.; Chen, J. M., A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon 2014, 77, 627-636.
101.STimmins, G.; JianLiu, K.; J.HBechara, E.; YashigeKotake; MSwartz, H., Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4•. Free Radic. Biol. Med. 1999, 27, (3-4), 329-333.
102.Fenoglio, I.; Tomatis, M.; Lison, D.; Muller, J.; Fonseca, A.; Nagy, J. B.; Fubini, B., Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic. Biol. Med. 2006, 40, (7), 1227-33.
103.Wang, Y. S.; Shen, J. H.; Horng, J. J., Chromate enhanced visible light driven TiO2 photocatalytic mechanism on Acid Orange 7 photodegradation. J. Hazard Mater. 2014, 274, 420-427.
104.Rokhina, E. V.; Makarova, K.; Lahtinen, M.; Golovina, E. A.; Van As, H.; Virkutyte, J., Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics. Chem. Eng. J. 2013, 221, 476-486.
105.Verstraeten, S. V.; Lucangioli, S.; Galleano, M., ESR characterization of thallium(III)-mediated nitrones oxidation. Inorganica Chim. Acta 2009, 362, (7), 2305-2310.
106.Wang, Y.; Sun, H.; Ang, H. M.; Tadé, M. O.; Wang, S., 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Appl. Catal. B-Enviorn. 2015, 164, 159-167.
107.Sun, H. Q.; Kwan, C.; Suvorova, A.; Ang, H. M.; Tade, M. O.; Wang, S. B., Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Appl. Catal. B-Enviorn. 2014, 154, 134-141.
108.Duan, X. G.; Sun, H. Q.; Wang, Y. X.; Kang, J.; Wang, S. B., N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. Acs Catal. 2015, 5, (2), 553-559.
109.Olmez-Hanci, T.; Arslan-Alaton, I., Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem. Eng. J. 2013, 224, 10-16.
110.Luo, S.; Wei, Z. S.; Dionysiou, D. D.; Spinney, R.; Hu, W. P.; Chai, L. Y.; Yang, Z. H.; Ye, T. T.; Xiao, R. Y., Mechanistic insight into reactivity of sulfate radical with aromatic contaminants through single-electron transfer pathway. Chem. Eng. J. 2017, 327, 1056-1065.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top