跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/14 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳慧娟
研究生(外文):Hui-Chuan Chen
論文名稱:樹脂薄片電去離子技術應用於半導體合成廢水中鎳離子去除之表現評估
論文名稱(外文):Performance Evaluation of Resin Wafer Electrodeionization Technology for Nickel Removal from Synthesized Semiconductor Wastewater
指導教授:蔣本基蔣本基引用關係潘述元潘述元引用關係
指導教授(外文):Pen-Chi ChiangShu-Yuan Pan
口試委員:顧 洋陳奕宏
口試委員(外文):Young KuYi-Hung Chen
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:101
中文關鍵詞:樹脂薄片電去離子技術綠色技術含鎳離子廢液之製程廢水合成半導體廢水再利用鎳離子去除生命週期評估
DOI:10.6342/NTU201902772
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樹脂薄片電去離子是一種不僅用於淡鹽水淡化,不使用有害化學物質之外,亦可能淨化及濃縮含金屬離子廢水利於後續回收利用的技術。本研究藉由不同施加電壓和進料流速條件,來評估樹脂薄片電去離子技術對於含鎳離子合成廢水淨化的能量效率,去除率,生產率與回收率。結果表明,在鎳離子濃度為2g/L,可達94%以上的去除率,更在操作條件下為90mL/min進流流量及9V操作電壓下,處理後濃度為0.4 mg/l低於法規放流水標準,而在3g/L,可達70%以上的去除率及6(g/m2/hour)以上的生產率,且在電去離子技術的反應動力學的研究,得知其去除率部分符合一階反應動力學模式,最後使用Umberto 5.5.之生命週期軟體,進行初步評估結果得知樹脂薄片電去離子技術具有較低的環境衝擊結果,且本研究以Design Expert軟體評估其較高去除率及較低能耗之最佳化操作條件。此外,本技術不僅有可以原位電再生離子交換樹脂能力,減少污泥的生成,有害化學物質使用,亦有淨化及濃縮的功能利於回收使用,在其他淨水技術中具有一定的優勢。
Resin wafer electrodeionization is different from the other water purification technologies in that its brackish water desalination requires no harmful chemicals use. In addition, it is capable of purifying and producing metal ion containing wastewater. Despite these merits, two drawbacks of the general electrodeionization technology affect its wide application in the field: the high energy consumption and heterogeneization. In this study, the performance efficacy of resin wafer electrodeionization used nickel ion-containing synthetic wastewater under different applied voltages and feed flow rates, and evaluated the energy efficiency, removal ratio, productivity, and recovery ratio. The results showed the nickel ion concentration is 2g/L, the removal ratio can reach 94% or more, and under the operating conditions, the inflow flow rate of 90mL/min and the application voltage of 9V, the concentration after treatment is 0.4 mg/l lower than the regulatory standard. The nickel ion concentration is 3 g/L, and the removal ratio of 70% or more and the productivity of 6 (g/m2/hour) or more are obtained, and the results are found that optimization operating conditions of the high removal ratio and low energy consumption by Design Expert software. In the study of the reaction kinetics of the electrodeionization technology, it was found that the removal rate partially conformed to the first-order reaction kinetics model. Finally, Umberto 5.5. life cycle software was used for preliminary evaluation. The resin wafer electrodeionization technology has lower environmental impact results. Therefore, the advantages of this technology are demonstrated in this present study: (1) this technology with ion exchange resins can be being electrically re-generable in situ; (2) reducing sludge formation; (3) its waiving the use of harmful chemicals; (4) allowing purification and concentration, which is beneficial to recycling. In conclusion, all these merits confirm the strengths of this technology in meeting the needs of contemporary life and its promising role in the field.
Contents
誌謝 i
摘要 ii
Abstract iii
Contents ii
List of Figures v
List of Tables viii
Chapter 1 Introduction 1
1-1 Global Water Shortage 1
1-2 Wastewater from Semiconductor Industries 2
1-3 Objectives 5
Chapter 2 Literature Review 6
2-1 Water-Energy Nexus 6
2-1-1 Current Situation of Water Resources 6
2-1-2 Overview of Water Purification Technologies 7
2-2 Electrodeionization 11
2-2-1 Origin of Electrodeionization 11
2-2-2 Principles of Electrodeionization 12
2-2-3 Comparison Resin-Wafer Electrodeionization with general Electrodeionization 14
2-3 Models of RW-EDI process 15
2-3-1 The porous plug model 15
2-3-2 Nernst-Planck Equation 16
2-3-3 The water dissociation reactions 17
2-3-4 Adsorption Isotherms 18
2-4 Life Cycle Assessment (LCA) 19
Chapter 3 Materials and Methods 20
3-1 Research Flowchart 20
3-2 Materials 21
3-2-1 Source of Agents 21
3-2-2 The configuration of Resin-Wafer Electrodeionization Stack 26
3-3 Experimental Methods 28
3-3-1 Preparation of Resin Wafer 28
3-3-2 Preparation of RW-EDI molds 30
3-3-3 Operation Procedure of RW-EDI 32
3-3-4 Key Performance Indicators [9,10] 33
3-3-5 Response Surface Methodology (RSM) 35
3-4 Analytical Instruments 37
3-4-1 Inductively Coupled Plasma (ICP) 37
3-4-2 Ion Chromatography (IC) 39
Chapter 4 Results and Discussion 41
4-1 Synthesis of Resin-Wafer Materials 41
4-1-1 Pretreatment of Ion Exchange Resins 41
4-1-2 Determination of Resin Wafer Formula 43
4-1-3 Preliminary Tests of Prepared Resin Wafer Material in EDI 46
4-1-4 Current-voltage curves of RW-EDI 48
4-2 Performance of Nickel Removal using RW-EDI 51
4-2-1 Nickel ion Removal Efficiency 51
4-2-2 Current Efficiency 56
4-2-3 pH Values of Diluted Stream 58
4-3 Prediction Models of Ni Removal using RW-EDI 62
4-3-1 Removal Kinetics of RW-EDI 62
4-3-2 Response Surface Models 65
4-4 Environmental Impact Assessment (LCA) 72
4-4-1 The environmental impact assessment of RW-EDI 72
4-4-2 The cost of RW-EDI 74
Chapter 5 Conclusions and Recommendations 76
5-1 Conclusion 76
5-2 Recommendations 77
References 78
Appendix 84
References
1.World Wildlife Fund [WWF] (2018), "Water Scarcity-OVERVIEW." Retrieved from https://www.worldwildlife.org/threats/water-scarcity
2.Water Resource Agency,MOEA (2018) ,"Forward-looking foundation design painting - Water environment construction." Retrieved from https:// www.wra.gov.tw/6950/7169/105315/110922/110964/
3.Fang, D. and B. Chen (2017). "Linkage analysis for the water–energy nexus of city." Applied Energy 189: 770-779.
4.Valek, A. M., J. Susnik and S. Grafakos (2017). "Quantification of the urban water-energy nexus in Mexico City, Mexico, with an assessment of water-system related carbon emissions." Sci Total Environ.
5.The United Nations World Water Development Report (2016)," Water and jobs: facts and figures" The United Nations World Water Development Repor Volume 1, Pages 1-12.
6.Hamiche, A. M., Stambouli, A. B., & Flazi, S. (2016). A review of the water-energy nexus. Renewable and Sustainable Energy Reviews, 65, 319-331.
7.Norgate, T. E., Jahanshahi, S., & Rankin, W. J. (2007). Assessing the environmental impact of metal production processes. Journal of Cleaner Production, 15(8-9), 838-848.
8.Scarazzato, T., Panossian, Z., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2017). A review of cleaner production in electroplating industries using electrodialysis. Journal of Cleaner Production, 168, 1590-1602.
9.Yupo J. Lin1, Michael P. Henry, Seth W. Snyder, Shih-Perng Tsai, "Characterization of Electrodeionization for Product Purification." Energy Systems Division 9700 S. Cass Ave. Argonne National Laboratory Argonne, IL 60439
10.Chao Shen (2017), "Performance Evaluation of Energy-efficient Resin-Wafer Electrodeionization for Brackish Water Desalination." Master Thesis.
11.Alvarado, L., & Chen, A. (2014). Electrodeionization: principles, strategies and applications. Electrochimica Acta, 132, 583-597.
12.Pan, S. Y., Snyder, S. W., Ma, H. W., Lin, Y. J., & Chiang, P. C. (2018). Energy-efficient resin wafer electrodeionization for impaired water reclamation. Journal of cleaner production, 174, 1464-1474.
13.Bian, Y., Yang, X., Liang, P., Jiang, Y., Zhang, C., & Huang, X. (2015). Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon. Water research, 85, 371-376.
14.Mack Brooks Speciality Publishing (2012),"Separation sensations."Speciality Chemicals Magazine, Published: April 05, 2012.
15.Arar, Ö., Yüksel, Ü., Kabay, N., & Yüksel, M. (2014). Various applications of electrodeionization (EDI) method for water treatment—A short review. Desalination, 342, 16-22.
16.Jiang, B., Zhang, X., Zhao, X., & Li, F. (2018). Removal of high level boron in aqueous solutions using continuous electrodeionization (CEDI). Separation and Purification Technology, 192, 297-301.
17.Xin-Yu Zheng,Shu-Yuan Pan,Po-Chih Tseng,Huai-Li Zheng,Pen-Chi Chiang (2018) ," Optimization of resin wafer electrodeionization for brackish water desalination." Separation and Purification Technology,Volume 194, Pages 346-354.
18.Shu-Yuan Pan, Seth W. Snyder, Hwong-Wen Ma, Yupo J. Lin, and Pen-Chi Chiang (2017), "Development of a Resin Wafer Electrodeionization Process for Impaired Water Desalination with High Energy Efficiency and Productivity." ACS Sustainable Chem. Eng., 5 (4), pp 2942–2948.
19.Saurav Datta, Michael P. Henry, YuPo. J. Lin, Anthony T. Fracaro, Cynthia S. Millard, and Seth W. Snyder (2013) , "Electrochemical CO2 Capture Using Resin-Wafer Electrodeionization." ACS Ind. Eng. Chem. Res., 52 (43), pp 15177–15186
20.He, X., Mei, Y., Wang, Y., Sun, W., & Shen, M. (2019). Determination of inorganic anions in the whole blood by ion chromatography. Journal of pharmaceutical and biomedical analysis, 163, 58-63.
21.行政院環境保護署 (2005), 水中陰離子檢測方法-離子層析法,行政院環境保護署 環署檢字第 0940035295 號公告
22.行政院環境保護署 (2014), 感應耦合電漿原子發射光譜法,行政院環境保護署 環署檢字第 1020104884 號公告
23.Ferreira, S. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., & Dos Santos, W. N. L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta, 597(2), 179-186.
24.Das, A. K., & Dewanjee, S. (2018). Optimization of Extraction Using Mathematical Models and Computation. In Computational Phytochemistry (pp. 75-106).
25.放流水標準(民 108 年 04 月 29 日)
26.Lu, H., Wang, Y., & Wang, J. (2015). Recovery of Ni2+ and pure water from electroplating rinse wastewater by an integrated two-stage electrodeionization process. Journal of Cleaner Production, 92, 257-266.
27.Dzyazko, Y. S. (2006). Purification of a diluted solution containing nickel using electrodeionization. Desalination, 198(1-3), 47-55.
28.Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian journal of chemistry, 4(4), 361-377.
29.Shen, X., Fang, Z., Hu, J., & Chen, X. (2015). Membrane-free electrodeionization for purification of wastewater containing low concentration of nickel ions. Chemical Engineering Journal, 280, 711-719.
30.Lu, J., Wang, Y. X., Lu, Y. Y., Wang, G. L., Kong, L., & Zhu, J. (2010). Numerical simulation of the electrodeionization (EDI) process for producing ultrapure water. Electrochimica Acta, 55(24), 7188-7198.
31.Lu, J., Wang, Y. X., & Zhu, J. (2010). Numerical simulation of the electrodeionization (EDI) process accounting for water dissociation. Electrochimica Acta, 55(8), 2673-2686.
32.Tado, K., Sakai, F., Sano, Y., & Nakayama, A. (2016). An analysis on ion transport process in electrodialysis desalination. Desalination, 378, 60-66.
33.Krol, J. J., Wessling, M., & Strathmann, H. (1999). Concentration polarization with monopolar ion exchange membranes: current–voltage curves and water dissociation. Journal of Membrane Science, 162(1-2), 145-154.
34.Mahendra, C., Sai, P. S., & Babu, C. A. (2014). Current–voltage characteristics in a hybrid electrodialysis–ion exchange system for the recovery of cesium ions from ammonium molybdophosphate-polyacrylonitrile. Desalination, 353, 8-14.
35.Lu, H., Wang, Y., & Wang, J. (2014). Removal and recovery of Ni2+ from electroplating rinse water using electrodeionization reversal. Desalination, 348, 74-81.
36.Bouhidel, K. E., & Lakehal, A. (2006). Influence of voltage and flow rate on electrodeionization (EDI) process efficiency. Desalination, 193(1-3), 411-421.
37.Wang, J., Wang, S., & Jin, M. (2000). A study of the electrodeionization process—high-purity water production with a RO/EDI system. Desalination, 132(1-3), 349-352.
38.Nikonenko, V. V., Pismenskaya, N. D., Istoshin, A. G., Zabolotsky, V. I., & Shudrenko, A. A. (2008). Description of mass transfer characteristics of ED and EDI apparatuses by using the similarity theory and compartmentation method. Chemical Engineering and Processing: Process Intensification, 47(7), 1118-1127.
39.Pan, S. Y., Snyder, S. W., Ma, H. W., Lin, Y. J., & Chiang, P. C. (2017). Development of a resin wafer electrodeionization process for impaired water desalination with high energy efficiency and productivity. ACS Sustainable Chemistry & Engineering, 5(4), 2942-2948.
40.Pan, S. Y., Snyder, S. W., Ma, H. W., Lin, Y. J., & Chiang, P. C. (2018). Energy-efficient resin wafer electrodeionization for impaired water reclamation. Journal of cleaner production, 174, 1464-1474.
41.蔣安國, 蔣安仁, 丁敬哲, & 鍾健平. (2005). 以模擬技術和統計方法建構專案排程之可靠度. 第一屆管理與決策 2005 年學術研討會特刊, 119-130.
42.Li, Y., Zhang, S., Zhang, W., Xiong, W., Ye, Q., Hou, X., ... & Wang, P. (2019). Life cycle assessment of advanced wastewater treatment processes: Involving 126 pharmaceuticals and personal care products in life cycle inventory. Journal of environmental management, 238, 442-450.
43.Li, H., & Feng, K. (2018). Life cycle assessment of the environmental impacts and energy efficiency of an integration of sludge anaerobic digestion and pyrolysis. Journal of cleaner production, 195, 476-485.
44.World Health Organization. (2015). Health in 2015: from MDGs, millennium development goals to SDGs, sustainable development goals. World Health Organization.
45.陳勇龍. 趙樹華. 台積公司水資源管理實務. 台灣積體電路製造股份有限公司,檢自: http://www.edf.org.tw/Documents/1%E3%80%81%E5%8F%B0%E7%A9%8D%E5%85%AC%E5%8F%B8%E6%B0%B4%E8%B3%87%E6%BA%90%E7%AE%A1%E7%90%86%E5%AF%A6%E5%8B%99_201805.pdf
46.Purolite. (2019). Purofine PFA444. Purofine. Retrieved from https://www.purolite.com/product-pdf/PFA444.pdf
47.Purolite. (2019). Purofine C100E. Purofine. Retrieved from https://www.purolite.com/product-pdf/C100E.pdf
48.Endo, A., Tsurita, I., Burnett, K., & Orencio, P. M. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11, 20-30.
49.Hussey, K., & Pittock, J. (2012). The energy-water nexus: Managing the links between energy and water for a sustainable future.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top