(3.235.108.188) 您好!臺灣時間:2021/03/03 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴明艷
研究生(外文):Ming-Yan Dai
論文名稱:利用超重力旋轉填充床對都市垃圾焚化飛灰進行水洗及碳酸化以達穩定化和再利用
論文名稱(外文):Extraction and Carbonation of MSWI Fly Ash for Stabilization and Utilization via a Rotating Packed Bed
指導教授:蔣本基蔣本基引用關係潘述元潘述元引用關係
指導教授(外文):Pen-Chi ChiangShu-Yuan Pan
口試委員:陳奕宏林逸彬顧洋
口試委員(外文):Yi-Hung ChenYi-Pin LinYoung Ku
口試日期:2019-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:105
中文關鍵詞:都市垃圾焚化飛灰超重力旋轉填充床氯鹽去除碳酸化水泥取代
DOI:10.6342/NTU201901881
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的重點是利用超重力旋轉填充床對都市垃圾焚化飛灰進行水洗以及碳酸化,使飛灰達到穩定化並進行再利用。本研究的目標包括,探究超重力旋轉填充床水洗去除飛灰中的氯鹽的效果;利用RPB在捕集二氧化碳的同時,對飛灰進行碳酸化並研究其動力學;對於碳酸化後的飛灰作為膠凝材料,進行水泥取代以達到再利用的效果,並研究水泥砂漿的性質特徵。針對溫室氣體減量這一世界性的環境目標,以都市垃圾經焚化爐燃燒後所得的飛灰殘渣進行二氧化碳的捕集,研究證明超重力旋轉填充床技術可以很好地進行二氧化碳吸附,通過超重力旋轉床可將液體切割為更小的液滴,能更高效地進行反應,超重力焚化飛灰的碳酸化程序最高碳酸化程度可達到89.66%,捕碳容量約為0.253 kg /kg飛灰反應後水體的酸鹼值可降至6.07左右,提高超重力旋轉填充床的轉速可提高碳酸化轉化率。同時,碳酸化進程中所包含的水洗過程可高效地溶出飛灰中所含的可溶性氯鹽於水體中,可使固體中所含氯鹽降低83.85%。由於飛灰的主要組成成分與波特蘭水泥接近,且毒性溶出分析符合相關標準。本研究針對碳酸化反應後的飛灰添加水泥砂漿進行水泥取代,飛灰的添加對水泥的需水量及凝固時間都有一定的影響,且均符合標準。碳酸化後的取代樣呈現較好的抗壓強度,在取代率為5%時呈現較好的抗壓強度。
This study focused on the use of a rotating packed bed (RPB) for wet extraction and carbonation of municipal solid waste incinerator (MSWI) fly ash to stabilize and utilize. The objectives of this study include evaluating the extraction efficiency of chloride from MSWI fly ash with RPB; capturing CO2 during the carbonation process of fly ash and confirming the reaction kinetics by RPB; replacing cement by carbonated fly ash. MSWI fly ash was selected as feedstock in this research due to its high calcium content and high CO2 capture capacity. The optimal conversion of fly ash by experiment was 89.81% with a capacity of 0.253 kg-CO2 per kg-fly ash. The results showed that rotating speed of RPB can increase carbonation efficiency significantly. Meanwhile, the extraction process contained in the carbonation process can efficiently dissolve the 83.85% soluble chloride salt from fly ash. In this study, fly ash after carbonation reaction was used to replace cement. The replacement of fly ash has certain influence on the water demand and setting time of cement, but all meet the standards. The compressive strength of cement replaced by carbonated fly ash was higher than the cement replaced by fresh fly ash in all curing age, which revealed the best strength at a substitution ratio of 5%.
口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
Contents V
List of Figures VIII
List of Tables XII
Oral Defense Comments XIII
Chapter 1 Introduction 1-1
1.1 Significance and Importance 1-1
1.1.1 Global CO2 Emissions 1-1
1.1.2 CCUS Technology 1-3
1.1.3 Municipal Solid Waste Incinerator (MSWI) Fly Ash 1-6
1.2 Objectives 1-8
Chapter 2 Literature Review 2-1
2.1 Carbonation Process 2-1
2.1.1 Natural Carbonation 2-1
2.1.2 Accelerated Carbonation Process 2-2
2.1.3 Alkaline Waste for Accelerated Carbonation 2-4
2.2 Mechanism of Accelerated Carbonation Reaction 2-8
2.2.1 Process Mechanism of Carbonation 2-8
2.2.2 Leaching Behavior 2-10
2.3 Rotating Packed Bed (RPB) 2-12
2.4 Cement 2-14
2.4.1 Portland Cement 2-14
2.4.2 Composition of Cement 2-14
2.4.3 Hydration of Cement 2-15
Chapter 3 Materials and Methods 3-1
3.1 Research Flow Chart 3-1
3.2 Materials 3-2
3.2.1 Source of Agents 3-2
3.2.2 Equipment 3-3
3.3 Experimental Procedure 3-5
3.3.1 MSWI Fly Ash Pretreatment 3-5
3.3.2 Extraction Processes 3-5
3.3.3 Carbonation Process via RPB 3-6
3.4 Determination of Carbonation Conversion 3-10
3.5 Cement Replacement Procedure 3-12
3.6 Analytical Apparatuses 3-17
3.6.1 Thermogravimetric analysis (TGA) 3-17
3.6.2 Atomic Absorption Spectroscopy (AAS) 3-17
3.6.3 X-Ray Fluorescence 3-17
3.6.4 Scanning Electron Microscope (SEM) 3-18
3.6.5 Ion Chromatography 3-18
3.6.6 Toxicity characteristic leaching procedure (TCLP) 3-18
Chapter 4 Results and Discussion 4-1
4.1 Characteristics of MSWI Fly Ash 4-1
4.1.1 Physico-chemical Properties of MSWI Fly Ash 4-1
4.1.2 TCLP Test of Fly Ash 4-2
4.1.3 Morphology of MSWI Fly Ash with SEM-EDXS 4-3
4.2 Extraction Process Using High-gravity Process 4-6
4.2.1 Leaching Behavior of Calcium Ions in a RPB 4-6
4.2.2 Kinetics Modeling of Leaching Behavior 4-9
4.2.3 Extraction of Chloride in a RPB 4-18
4.3 Carbonation Process 4-22
4.3.1 Changes on Calcium Concentration during Carbonation 4-22
4.3.2 Carbonation Conversion 4-24
4.3.3 Degree of Chloride Ions Extraction in Carbonation Process 4-30
4.3.4 Summary 4-35
4.4 Efficacy of Carbonated Fly Ash as Cement Replacement 4-36
4.4.1 Theoretical Feasibility Analysis 4-36
4.4.2 Effect of Carbonated FA on Workability of Cement Mortar 4-40
4.4.3 Effect of Carbonated FA on Compressive Strength Development 4-44
4.4.4 Degree of Water-soluble Chloride in Cement Mortar 4-47
Chapter 5 Conclusions and Recommendations 5-1
5.1 Conclusions 5-1
5.2 Recommendations 5-2
Chapter 6 References 6-1
Chapter 7 Appendix 7-1
Alahrache, S., F. Winnefeld, J.-B. Champenois, F. Hesselbarth and B. Lothenbach (2016). "Chemical activation of hybrid binders based on siliceous fly ash and Portland cement." Cement and Concrete Composites 66: 10-23.
Azdarpour, A., M. Asadullah, R. Junin, E. Mohammadian, H. Hamidi, A. R. M. Daud and M. Manan (2015). "Extraction of calcium from red gypsum for calcium carbonate production." Fuel Processing Technology 130: 12-19.
Azdarpour, A., M. Asadullah, E. Mohammadian, H. Hamidi, R. Junin and M. A. Karaei (2015). "A review on carbon dioxide mineral carbonation through pH-swing process." Chemical Engineering Journal 279: 615-630.
Azdarpour, A., M. Asadullah, E. Mohammadian, R. Junin, H. Hamidi, M. Manan and A. R. M. Daud (2015). "Mineral carbonation of red gypsum via pH-swing process: Effect of CO2 pressure on the efficiency and products characteristics." Chemical Engineering Journal 264: 425-436.
Barnes, P. and J. Bensted (2002). Structure and Performance of Cements, Second Edition, Taylor & Francis.
Bobicki, E. R., Q. Liu, Z. Xu and H. Zeng (2012). "Carbon capture and storage using alkaline industrial wastes." Progress in Energy and Combustion Science 38 (2): 302 320.
C Ferreira, A Ribeiro, L Ottosen (2003). "Possible applications for municipal solid waste fly ash." Journal of Hazardous Materials 96: 201-216,
Camiletti, J., A. M. Soliman and M. L. Nehdi (2013). "Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete." Magazine of Concrete Research 65(5): 297-307.
Czernin, W. (1962). Cement Chemistry and Physics for Civil Engineers, Chemical Pub. Co.
Chang, E.E., S.Y.Pan, Y.H.Chen, C.S.Tan and P.C.Chiang (2012)."Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed." J Hazard Mater 227-228: 97-106.
Chang, E. E., A.-C. Chiu, S.-Y. Pan, Y.-H. Chen, C.-S. Tan and P.-C. Chiang (2013). "Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor." International Journal of Greenhouse Gas Control 12: 382-389.
Cheng, H.-H. and C.-S. Tan (2011). "Removal of CO2 from indoor air by alkanolamine in a rotating packed bed." Separation and Purification Technology 82: 156-166.
Chiang, K.Y., Tsai, C.C., Wang, K.S. (2009). "Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods. " Waste Management 29: 277-284.
Costa, G. (2009). Accelerated carbonation of minerals and industrial residues for carbon dioxide storage. UNIVERSITÀ DEGLI STUDI DI ROMA.
Costa, G., R. Baciocchi, A. Polettini, R. Pomi, C. D. Hills and P. J. Carey (2007). "Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues." Environmental Monitoring and Assessment 135(1-3): 55-75.
Dong, B., Q. Qiu, J. Xiang, C. Huang, H. Sun, F. Xing and W. Liu (2015). "Electrochemical impedance interpretation of the carbonation behavior for fly ash–slag–cement materials." Construction and Building Materials 93: 933-942.
Fernandez Bertos, M., S. J. Simons, C. D. Hills and P. J. Carey (2004). "A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2." J Hazard Mater112(3): 193-205.
Gerdemann, S.J., O''Connor, W.K., Dahlin, D.C., Penner, L.R., Rush, H., 2007. Exsitu aqueous mineral carbonation. Environ Sci Technol 41, 2587-2593.
GR., L. (1983). The use of mineralizers to produce high strength cement. the 5th International Conference on Cement Microscopy,, Nashville, Tennessee,.
Haug, T.A., Munz, I.A., Kleiv, R.A., 2011. Importance of dissolution and precipitation kinetics for mineral carbonation. Energy Procedia 4, 5029-5036.
He, L., D. Yu, W. Lv, J. Wu and M. Xu (2013). "A Novel Method for CO2 Sequestration via Indirect Carbonation of Coal Fly Ash." Industrial & Engineering Chemistry Research 52(43): 15138-15145.
Huijgen, W. J. J. and R. N. J. Comans (2005). "Mineral CO2 Sequestration by Steel Slag Carbonation." Environmental Science & Technology 39(24): 9676-9682.
Jolanta Doneliene, Anatolijus Eisinas, Kestutis Baltakys, Agne Bankauskaite (2106). "The Effect of Synthetic Hydrated Calcium Aluminate Additive on the Hydration Properties of OPC. " Advances in Materials Science and Engineering 2: 1-8
Jo, H., S.-H. Park, Y.-N. Jang, S.-C. Chae, P.-K. Lee and H. Y. Jo (2014). "Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions." Chemical Engineering Journal 254: 313-323.
Kaewmanee, K., P. Krammart, T. Sumranwanich, P. Choktaweekarn and S. Tangtermsirikul (2013). "Effect of free lime content on properties of cement–fly ash mixtures." Construction and Building Materials 38: 829-836.
Kang, J.-L., D. S.-H. Wong, S.-S. Jang and C.-S. Tan (2016). "A comparison between packed beds and rotating packed beds for CO2 capture using monoethanolamine and dilute aqueous ammonia solutions." International Journal of Greenhouse Gas Control 46: 228-239.
Lea, F. M. (1970). "The chemistry of cement and concrete."
Lin, C.-C., W.-T. Liu and C.-S. Tan (2003). "Removal of carbon dioxide by absorption in a rotating packed bed." Industrial & Engineering Chemistry Research 42(11): 2381-2386.
Lin, C. C. and Y. C. Lin (2016). "Preparation of ZnO nanoparticles using a rotating packed bed." Ceramics International 42 (15): 17295 17302.
Liu, C.-F., S.-M. Shih and R.-B. Lin (2004). "Kinetic Model for the Reaction of Ca(OH)2/Fly Ash Sorbents with SO2 at Low Temperatures." Industrial & Engineering Chemistry Research 43(15): 4112-4117.
Liu, H.-S., C.-C. Lin, S.-C. Wu and H.-W. Hsu (1996). "Characteristics of a rotating packed bed." Industrial & Engineering Chemistry Research 35(10): 3590-3596.
Luke Makarichi, Warangkana Jutidamrongphan, Kua-anan Techato(2018).
"The evolution of waste-to-energy incineration: A review." Renewable and Sustainable Energy Reviews 91:812-821
Marsh, B. K. and R. L. Day (1988). "Pozzolanic and cementitious reactions of fly ash in blended cement pastes." Cement and Concrete Research 18(2): 301-310.
Mehta, P. K. and P. J. M. Monteiro (2006). Concrete Microstructure, Properties, and Materials, McGraw-Hill.
Minqshu, D. Y. W. X. T. (1989). "HIGH STRENGTH ALKALI SLAG CEMENT." Journal of Nanjing University of Technology (Natural Science Edition) 2: 002.
Mittal, M. L., C. Sharma and R. Singh (2012). Estimates of emissions from coal fired thermal power plants in India. 2012 International Emission Inventory Conference.
Modak, J. B., A. Bhowal and S. Datta (2016). "Extraction of dye from aqueous solution in rotating packed bed." J Hazard Mater 304: 337-342
Montes-Hernandez, G., R. Perez-Lopez, F. Renard, J. Nieto and L. Charlet (2009). "Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash." Journal of Hazardous Materials 161(2): 1347-1354.
Pan, S.-Y., E. Chang and P.-C. Chiang (2012). "CO 2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications." Aerosol and Air Quality Research 12(5): 770-791.
Pan, S.-Y., E. E. Chang, H. Kim, Y.-H. Chen and P.-C. Chiang (2016). "Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications." Journal of Hazardous Materials 307: 253-262.
Pan, S.-Y., A. Chiang, E. Chang, Y.-P. Lin, H. Kim and P.-C. Chiang (2015). "An innovative approach to integrated carbon mineralization and waste utilization: a review." Aerosol Air Qual. Res 15: 1072-1091.
Pan, S.-Y., P.-C. Chiang, Y.-H. Chen, C.-S. Tan and E. E. Chang (2013). "Ex Situ CO2 Capture by Carbonation of Steelmaking Slag Coupled with Metalworking Wastewater in a Rotating Packed Bed." Environmental Science & Technology 47(7): 3308-3315.
Pan, S.-Y., P.-C. Chiang, Y.-H. Chen, C.-S. Tan and E. E. Chang (2014). "Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion." Applied Energy 113: 267-276.
Pan, S.-Y., A. M. Lorente Lafuente and P.-C. Chiang (2016). "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization." Applied Energy 170: 269-277.
Pei, Si-Lu, Shu-Yuan Pan, Ye-Mei Li, Xiang Gao, and Pen-Chi Chiang (2018). ''Performance evaluation of integrated air pollution control with alkaline waste valorization via high-gravity technology'', Journal of the Taiwan Institute of Chemical Engineers, 87: 165-73.
Q. Nie, C. Zhou, X. Shu, Q. He, B. Huang (2014). “Chemical, mechanical, and durability properties of concrete with local mineral admixtures under sulfate environment in Northwest China Materials”, 7: 3772-3785
Q. Nie, C. Zhou, H. Li, X. Shu, H. Gong, B. Huang “Numerical simulation of fly ash concrete under sulfate attack Construct”. Build. Mater., 84: 261-268
Seifritz, W., 1990. CO2 Disposal by Means of Silicates. Nature 345, 486-486.
Shih, S.-M., C. u.-S. Ho, Y.-S. Song and J.-P. Lin (1999). "Kinetics of the Reaction of Ca(OH)2 with CO2 at Low Temperature." Industrial & Engineering Chemistry Research 38(4): 1316-1322.
Si-Lu Pei, Shu-Yuan Pan, Xiang Gao, Yun-Ke Fang, Pen-Chi Chiang (2018). “Efficacy of carbonated petroleum coke fly ash as supplementary cementitious materials in cement mortars.” Journal of Cleaner Production 180:689-697
Sipilä, J., S. Teir and R. Zevenhoven (2008). "Carbon dioxide sequestration by mineral carbonation Literature review update 2005–2007." Report VT 1: 2008. 76.
Sprung, S., K. Kuhlmann and H. G. Ellerbrock (1985). Particle size distributionand properties of cement, Part II: Water demand of Portland cement, Zement-Kalk-Gips
"Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)." ASTM C109/C109M.
Tung, H.-H. and R.S.H.Mah (2007). "Modeling Liquid Mass Transfer in Higee Separation Process." Chemical Engineering Communications 39(1-6): 147-153.
T.Y. Huang, P.T. Chuieh (2015). "Life Cycle Assessment of Reusing Fly Ash from Municipal Solid Waste Incineration. " Procedia Engineering 118: 984-991.
Van Gerven, T., D. Van Baelen, V. Dutré and C. Vandecasteele (2004). "Influence of carbonation and carbonation methods on leaching of metals from mortars." Cement and Concrete Research 34(1): 149-156.
Wang, X.-Y. (2014). "Effect of fly ash on properties evolution of cement based materials." Construction and Building Materials 69: 32-40.
Wu, T., M. Chi and R. Huang (2014). "Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash." Construction and Building Materials 66: 172-180.
Xu, J., C. Liu, M. Wang, L. Shao, L. Deng, K. Nie and F. Wang (2017). "Rotating packed bed reactor for enzymatic synthesis of biodiesel." Bioresour Technol 224: 292-297.
Yi Xia, Hua Zhang, Khamphe Phoungthong, Dong-Xiao Shi, Wen-Hui Shen, Li-Ming Shao, Pin-Jing He (2015),"Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk. " Waste Management 42: 93-100
Yonghai Jiang, Beidou Xi, Xiujin Li, Ling Zhang, Zimin Wei (2009). "Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator. " Journal of Hazardous Materials, 161: 871-877
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔